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ABSTRACT

Near-field pressure and velocity measurements, along

with multiple flow visualization techniques, were

obtained at several azimuthal positions to establish the

effect of initial conditions and Reynolds number on the

development and nature of instabilities in the initial

region of axisymmetric free jets. In cases where the

exit boundary layer is laminar, the natural jet is found

to be unstable alternately to axisymmetric and helical

modes having Strouhal numbers of 0.013 and 0.016,

respectively. With proper normalization, the scaling of

these modes is independent of Reynolds number and initial

jet disturbance level. However, the disturbance level

does determine the sensitivity of the initial region to

the helical mode. When the initial axisymmetric mode

grows to a finite amplitude, a subharmonic resonance

mechanism that leads to pairing develops two fuamnta1

wavelengths from the jet exit. This position corresponds

to where strong entrainment into the jet is first

observed. Because of the alternating instability of the

jet, the axisymmetric and helical modes interact

nonlinearly, generating numerous sum and difference

modes. With the strong growth of the subharmonic mode, a

secondary set of nonlinear interactions develops between

the subharmonic mode and the above modes.
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A strong near-field pressure is associated with each

of these instablity modes and is coherent with the

velocity fluctuations in the jet over the entire growth

and decay regions of each mode. The details of this

field, along with the scaling of the resonant position,

reveal that pairing is not responsible for a feedback

mechanism. This strong near-field pressure acts as a

natural excitation to the jet. When the initial

background disturbance level in the exit boundary layer

for a given mode is lower than the velocity fluctuations

generated through the functional relationship with the

pressure field, that mode initially grows exponentially

in the jet with a phase speed determined by its Strouhal

number. The initial amplitude of these modes is

determined by the acoustic efficiency of the downstream

source, with the lower frequency modes being more

efficient. When the background disturbance is
0

sufficiently low, a natural coupling is observed at

special operating conditions where the initial modes are

coupled to the mode observed near the end of the

potential core of the jet.

When the exit boundary layer is turbulent, a linear

instability mechanism which scales with St = 0.024 is

documented near the exit. By locally applying linear

spatial theories to account for the flow divergence, the

development of the jet is adequately described from the

initial region to the end of the core. In general, if

xxvii



the shear-region divergence and subharmonic resonance of

the jet are incorporated, the behavior of the near region

of the jet can be explained by such a linear theory

coupled with locally parallel flow assumptions.

xxviii
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CHAPTER I

INTRODUCTION

Over the past few years, the Fluids group at IIT has

been interested in the relationship between large scales

in fully turbulent flows and basic instability

mechanisms. This interest stems from the attractiveness

of potential applications of various types of passive and

active devices to control, manage or manipulate these

flows. In the two latest works, Wlezien (1981) examined

the evolution of the low wavenumber structure in a

turbulent wake and Corke (1981) examined the role, origin

and manipulation of large scales in a turbulent boundary

layer. These investigations examined two classical flows

with new conceptual ideas and state of the art signal

processing. The outcome of this led to the clarification

of much of the confusion which had existed in the

previous literature. It is with this same spirit that

another classical flow is examined here.

Research on turbulent free jets has been actively

carried out for the past twenty-five years.

Traditionally, this work either examines the nature and

characteristics of the acoustic far field or the

development of the hydrodynamic field of the jet.

Ideally, one of the end results is to determine the link

between these two fields with the eventual prospect of

reducing jet noise. Unless the dynamics of the

1~ - -



2

developing jet are properly understood, the link between

these two fields cannot be properly described and the

prospects for reducing jet noise are marginal at best.

Measurements in the acoustic far field cannot

describe the dynamics of the jet nor can they identify

the major sources, due to the compact appearance of a jet

from large distances. For this reason, a large effort

has been consentrated into examining the details of the

jet flowfield. It will be seen though, that some of

these results are confusing, not well understood, or

quite often contradictory.

Background and Motivation

In the mid 1960's and early 1970's, important

discoveries were made by examining the development of

axisymmetric jets and two dimensional shear layers, in

particular with flow visualization. Work by Crow and

Champagne (1971) in an axisymmetric jet proved that there

was an orderly structure to the, previously believed,

random turbulence in the jet. These large scale

structures are an integral part of the jet development

and can even be enhanced under certain conditions when a

slight surging of the jet is introduced. These large

scales develop from turbulent exit boundary layers and

can be tied to the instability of the developing jet.

Prior to this, Bradshaw (1965) recognized that when the

exit boundary layer is laminar, the initial jet
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development could be thought of as a series of vortex

rings, which Wille (1963) observed to pair or coalesce as

they traveled downstream. They believed that this

pairing gave rise to a characteristic frequency which was

one half of that associated with the initial structures.

Brown and Roshko (1974) in a two dimensional shear

layer also observed the emergence of large scales that

merged with their neighbors as the shear layer developed

downstream. These phenomena persisted even at high

Reynolds numbers. Similar observations were made by

Winant and Browand (1971) in a low Reynolds number
(I•experiment in a two dimensional shear layer. In this

case the initial boundary layer was laminar and the

authors concluded that the pairing of structures was the

mechanism for the growth of the shear layer.

From these observations, it became clear that

turbulence is not as purely stochastic as previously

believed. Two different points of view arose during this

era. One group viewed these large scale structures as

dominating the growth and evolution of the developing

flow in both axisymmetric jets and two dimensional shear

layers. It was even believed that their evolution and

interaction played a major role in the noise generation

mechanism. As a consequence, flow visualization,

acoustic excitation and conditionally sampled techniques

became widely used in an attempt to extract statistical

properties of the structures themselves and of their

(0
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interactions. Others continue to view these as remnants

of the instability and transition process that are not

likely to persist at the technologically important

Reynolds numbers. In either case, the understanding of

these large scales can only be approached from an

instability point of view. In our view, the growth of

the large scales is most likely related to the evolution

of unstable modes of the mean she:-.

Theoretical works have dealt with strictly

two-dimensional shear layers and axisymmetric jets. A

shear layer depends only on one length scale, e.g., the

axial distance or length describing the width of the

shear layer. An axisymmetric jet though, has an extra

added dimension, that being the radius or a length

representing the azimuthal variation. No matter how thin

the axisymmetric shear layer is, this azimuthal

dependence still exists. Keeping this distinction in

mind, a survey of the relevant literature is presented.

Theoretical work on strictly two dimensional shear

layers is examined first. Michalke (1964) first examined

the initial growth of disturbances on a hyperbolic

tangent velocity profile using a temporal formulation of

the problem. For this case, modes having a Strouhal

number between 0 and 0.04 were amplified and the maximum

amplified mode occurred at a Strouhal number based on

momentum thickness of 0.017. Since the problem was

formulated in a temporal frame, the phase speed of the
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disturbance has a constant value of 0.5 and independent

of St . In 1965, Michalke reformulated the problem in a

spatial sense where the disturbances grow in the

streamwise direction. The amplification curves

calculated using the same mean velocity profile exhibited

similar behavior, although the amplification rates near

its maximum value were approximately 20% higher than in

the temporal case. The main difference between these two

formulations was in the phase speed of the disturbance.

In the spatial case, disturbances below the maximum

amplified St were found to be dispersive while those10 e
above the maximum amplified Ste were found to be

non-dispersive. The basic assumptions utilized in these

formulations were those of parallel flow and linear

instability.

Freymuth (1966) experimentally examined the initial

instability characteristics of an axisymmetric jet with a

laminar exit boundary layer using external accustic

forcing. Amplification rates and phase speeds of the

forced modes were determined. The main findings were

that the phase speed measurements are dispersive in

nature for forcing frequencies below the maximum

amplified mode. From this point on there should have

been no doubt that spatial amplification was the only

proper formulation. However, amplification rates

measured by Freymuth were approximately 20% below those

calculated from the linear spatial theory of Michalke
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(1965). The unfortunate aspect of this was that the,

experimentally measured amplification rates happened to

lie near the temporal theory. This caused much confusion

over the proper formulation. Even though the experiments

of Freymuth (1966) were carried out in an axisymmetric

jet, the results are compared to shear layer analyses

here just to show that the spatial theory properly

described the non-dispersive nature. The difference in

amplification rates were probably due to a difference in

profile shape.

* Recent work by Monkewitz and Huerre (1981) examined

the effect on the mode amplification of velocity ratio

across a two dimensional shear layer and also the effect

of slightly changing the mean velocity profile. When the

mean velocity profile in the shear layer was calculated

using laminar boundary layer assumptions, it was found

that the maximum amplification is approximately 20% lower

than that for the hyperbolic tangent profile. This

difference accounted for the discrepancy of Freymuth's

(1966) measurements. Although the profiles look

extremely similar, the difference lies in the maximum

slope of the profile; in this case the hyperbolic tangent
profile has an initially larger slope. This change in

slope modifies the initial vorticity distribution in the

inviscid Rayleigh equation. Once again parallel flow

assumptions were used.

The-basic linear theories just described consider
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the initial exponential growth of an unstable mode in a

parallel flow. Kelly (1967) has determined that when

this linear instability reaches a finite value, another

instability based on subharmonic resonance can arise. In

this case the frequency of the new instability is exactly

one-half of the original linear instability. The

subharmonic resonance is weakly non-linear and described

by the Mathieu equation. This formulation is temporal

but it does give insight into the mechanism for the

emergence of the subharmonic mode.

As the initial linear instability grows in amplitude

toward a value of about 1%j ti :e shear layer begins to

roll-up and form discrete vortices. The formulation

proposed by Kelly (1967) does not account for this, since

by the time the discrete vortices are observable the

problem is fully nonlinear. Pierrehumbert (1980)

examined the effect of this nonlinearity on the

subharmonic resonance. His results, formulated again in

a temporal sense, indicate that the growth rate of the

subharmonic mode which evolves from this parametric

instability is approximately 30% higher than that which

would exist just based on simple exponential growth

according to Michalke's (1965) spatial theory. In this

case the nonlinearity of the rolled-up vortices enhances

the growth rate of the subharmonic mode. In recent work

by Ho and Huang (1981) in a two dimensional shear layer,

pairing of vortices is shown to be a product of this
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subharmonic instability. In fact, the pairing occurs

where the energy of the subharmonic saturates.

We now turn our attention to the instability

theories for axisymmetric jets. The first major paper on

the theoretical analysis of axisymmetric jets was

presented by Batchelor and Gill (1962). Linear inviscid

stability theory, assuming parallel flow and temporal
development was used to analyze both the near and far

regions of the jet. Even though a top hat profile was

used for the near region, so that its usefulness is

limited, the far downstream jet profile, corresponding to

the region past the potential core, was found to be

unstable to helical disturbances and stable to

axisymmetric disturbances. To explain the work of Crow

and Champagne (1971), Michalke (1971), in a paper which

did not receive adequate attention, reformulated a

spatial instability theory for axisymmetric jets to

account for a finite momentum thickness of the initial

region. A family of axisymmetric hyperbolic tangent

profiles were considered, each having a different

momentum thickness associated with it. Even though

parallel flow assumptions were used, the family of

profiles could be used to describe a locally parallel

flow condition at any axial distance up to the end of the

potential core. The family of profiles are described as

a function of R/O , where R is the radius where the local

mean velocity is 50% the jet velocity ande is the
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momentum thickness. For large values of R/e , the

amplification curves are nearly identical to those of a

strictly two-dimensional shear layer. However, a

significant difference lies in the behavior of the phase

speed. For a two-dimensional shear layer, the phase

sp.eed is always less than one. For an axisyinmetric jet

,.ith a large R/ e though, phase speeds larger than one are

predicted at low Strouhal numbers. This is not

surprising because of the additional length scale, i.e.,

the jet radius. This was experimentally confirmed by

Bechert and Pfizenmaier (1974). These differences
continue in the limit as R/ approaches infinity. Only

when the jet radius is infinite does the difference

disappear, i.e., when the flow reduces to a one length

scale problem. In addition to these differences,

non-axisymmetric modes can be amplified. Michalke (1971)

found that the first helical mode has amplification

characteristics nearly identical to the axisymmetric

mode. In this case maximum amplification for both

axisymmetric and helical modes occurred at the same

Strouhal number. No region where the phase speed is

larger than one was found for the helical mode.

In a similar work, Mattingly and Chang (1974)

emloyed the same formulation as Batchelor and Gill (1962)

and Michalke (1971) but used an axisymmetric gaussian

distribution to describe the downstream development of

the jet. The measured velocity profiles were obtained in

i
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a water jet where the Reynolds number was only 300. Even

though these measurements were obtained at these low

values, the above authors' theory showed that near the

nozzle the amplification of the axisymmetric and helical

modes differed by only 12%, with that of the axisymmetric

mode being larger. The frequency of the maximum

amplified helical mode was 20% higher than that for the

axisymmetric mode. To date, this result has not yet been

verified by experiments. Similar work was also presented

by Chan (1974). In his experiments, it was observed that

the maximum amplified mode is a function of the radial
4J

position. This result could not be predicted from

parallel flow assumptions, however.

Crighton and Gaster (1976) used a multiple-scales

expansion to take into account the slow divergence of the

developing jet and examined the evolution of the

axisymmetric mode. The main findings of this study

indicate that when the instability characteristics for

the diverging flow are compared to the theory using

locally parallel flow assumptions, the characteristics of

the most unstable mode along the centerline are nearly

identical. The results also indicate that the maximum

amplified mode was a function of radial position, with

that in the mean shear region being larger than on the

centerline, agreeing with Chan (1974). Even though no

radial information on amplification rates or phase speeds

can be obtained from the locally parallel flow, the

4 * -



determination of the most unstable mode on the centerline

is consistent with the weakly non-parallel theory. This

analysis was extended by Plaschko (1979) to incorporate

the first two helical modes. The results once again

resembled those predicted by Michalke (1971), when

locally parallel flow assumptions are used.

Based on Michalke's (1971) spatial theory, the

initially most amplified cisturbence frequency for a

hyperbolic tangent mean velocity profile corresponds to a

Strouhal number of 0.017. This value was not found to be

sensitive to the shape of the profile as determined by

Monkewitz and Huerre (1981). This value was confirmed by

Freymuth (1966) and by Zaman and Hussain (1981) for an

acoustically excited jet with a laminar exit boundary

layer. However, in a naturally developing jet Hussain

and Zaman (1978), among others, show that the initial

frequency in a jet occurs at a Ste= 0.012. A survey of

the literature reveals that this value varies from 0.009

to 0.017. No rational explanation has been offered for

this peculiar behavior. When the jet is acoustically

forced, an axisymmetric field is imposed on the jet.

However, in the naturally developing jet it has bee,,

assumed that the initial instability is axisymmetric.

Upon examination of the shear layer velocity spectrum of

Husain and Hussain (1979), a multiplicity of spectral

peaks are noted in the range of Strouhal numbers 0.01 to

0.016. However, there is no way to identify the spectral

0S
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peaks without determining the azimuthal characteristics

of these modes. Part of the reason for the multiple

peaks may be due to the nearly equal amplification for

non-axisymmetric modes as predicted by linear theories.

It is quite surprising that axisymmetry of naturally

developing jets is usualy assumed without documentation

* of the initial azimuthal dependence.

From the experiments of Bruun (1977), Hussain and

Clark (1981), Davis and Davies (1979), Yule (1978), and

Peterson (1978) among a long list of others, pairing or

large scale interactions have been found to contribute to

the growth of the jet when the initial exit boundary

layer is laminar. The number of observed pairings

between the initial instability and final Strouhal mode

near the end of the core varies between 1 and 3 among

different authors. The question remains though, how

important is pairing in different operating condition and

in particular to the far field noise. To properly answer

this, the role of nonaxisymmetric disturbances must be

examined. This has not yet been addressed. Axisymmetry

has normally been assumed. Using this assumption, Acton

(1980) modelled an axisymmetric jet using a series of

vortex rings. In this case the development of the jet

can only proceed through the pairing process. It is on

this assumption that Ho (1981) bases his subharmonic

evolution model.

In recent years it has been observed that a
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disturbance field generated by the pairing process may

affect the subsequent evolution of large scales. This

was first noted by Dimotakis and Brown (1976). Work in

an impinging jet by Ho and Nosier (1980) shows that at

certain high values of Reynolds number a resonance

mechanism occurs when the sum of the number of downstream

wavelengths and the number of wavelengths in the upstream

acoustic field is an integer. This is the so-called

feedback mechanism. In a naturally developing jet,

Laufer and Monkewitz (1980) suggest that the initial

region of a jet is modulated by a frequency corresponding

to that developed near the end of the potential core.

With this, Laufer (1980) and Ho (1981) attempt to

interpret the initial evolution of jets by a natural
feedback mechanism. They state that the pairing sends

back a pertubation which synchronizes the next pairing.

As proof of this model, Gutmark and Ho (1981) reported
that the initial instability frequency of the jet varies

in a stepwise fashion with Reynolds number. Recently Ho

(1981) discovered tbat the stepwise nature was due to a

low level acoustic disturbance in the facility which

coupled to the initial instability of the jet in a manner

similar to that introduced artificially by Kibens (1980).

A closer examination of the feedback model needs to be

undertaken to determine its applicability.

All of the above experimental research is based on
an axisymmetric view of the jet. Moore(1977) found that
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the. "final" Strouhal mode varied between axisymmetric and

helical modes. Once the non-axisymmetric nature is

introduced, the simple pairing model would not correctly

or completely describe the development of the jet. If

there are non-axisymmetric modes developing in the

initial region of the jet then forcing the jet and

imposing axisymmetry cannot be representative of its

natural development. The existance and importance of

these modes however has not been explored.

Work in a forced jet by Kibens (179) showed that

when the initial instability is related to the "final"

jet frequency by an integral multiple of two, the jet

became extremely organized, pairings were localized and

the development of initial frequency to final frequency

occurred through a number of pairings. Under this

condition it was also noted that discrete peaks in the

acoustic field were at frequencies corresponding to the

pairing generated frequencies. When the ratio of the

frequencies was not a simple multiple of two, this

behavior was not as dramatic, based on a private

communication with Kibens. It was clear then that some

type of coupling mechanism was involved. Nints at this

same coupling were also observed by Zaman and Hussain

(1980). It is not clear if the coupling is a natural

phenomenon or if it is due to the imposed axisymmetry, be

it controlled or incidental.

Pui and Gartshore (1979) have examined the effect of
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free stream turbulence on the development of a

two-dimensional shear layer. Their results indicated

that the disturbance level increased the mean growth rate

of the shear layer. Chandrsuda et al. (1978) examined

the effect of free stream turbulence on the large scales

in turbulent mixing layers and concluded that the initial

three dimensionality in a free jet appears via a vortex

ring instability. They also suggest that if the exit

boundary layer is turbulent a Brown-Roshko type of

structure will not appear. Hussain and Zedan (1978) show

that the initial growth of the jet is unaffected by

changes in the initial momentum thickness but increases

as the peak intensity in the exit boundary layer

increases. In this case a jet with turbulent exit

boundary layer grew faster than initially laminar ones, a

result contradicted by the work of Browand and Latigo

(1979). The results of Hussain and Zedan (1978) did

show, however, that the mean characteristics and hence

the large scale evolution were dramatically affected by

the initial disturbance level in the boundary layer.

This recent research indicates that the initial

conditions play an important role in the development of

the jet. However, it is unclear whether the initial

conditions change the characteristics of the developing

instabilities.

From the literature review of some of the more

relevant works, it is clear that the initial development
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of a natural jet has not been well examined. In

particular, the role of the various identified mechanisms

in the developement of the jet noise field remains

contradictory and unclear. If one is to control the jet

and manage its noise field, one must understand the

generating flow field and, in particular, its energetic

large structures. With this in mind the objectives of

this work emerged.

Objectives

1) To examine the initial instability

characteristics of a natural "axisymmetric"

free jet and to determine if other than

axisymmetric instabilities and large scale

structures play an important role in the

development of the jet. If so, to find out how

do they affect the simple axisymmetric thinking

about jet development. In addition, to assess

the importance of the non-parallel flow or

divergence of the jet in regard to its

instabilities.

2) To investigate the effect of initial conditions

and Reynolds number on the nature of the

developing instabilities. The initial

conditions can be altered by changing the state

of the exit boundary layer, increasing the

Reynolds number with a constant core intensity

- - -- - - -
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or by fixing the Reynolds number and altering

the disturbance level at the exit by utilizing

suitable upstream grids. A close relation

between initial conditions and jet evolution

can then be derived.

3) To closely examine the evolution of the

subharmonic mode. Utilizing near field

pressure measurements and velocity measurements

in the jet, conduct experiments to prove or

disprove the feedback mechanism as well as

establish the degree of importance of pairing

in natural jets. Also, to closely examine the

upstream influence of downstream evolving

modes, constantly keeping initial conditions

in mind.

4) To determine if a natural coupling exists

between the initial instability of the jet and

the "final" Strouhal mode and, if so, how is it

affected by the initial conditions. In

addition, find out whether the coupling is

natural and simply enhanced by forcing or

whether forcing imposes this condition on the

flow. The "final Strouhal mode appears to be

the dominant frequency in the far field jet

noise.

t-0
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Near the end of the potential core, the jet

maintains its maximum characteristic velocity with the

most mass flux, because of entrainment. The large scales

at the end of the near region of the jet may very well be

the most energetic of the noise generating eddies. If we

are to understand the relation between the jet flow and

its noise field in depth, we need the above information

well documented and understood.

'-
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CHAPTER II

EXPERIMENTAL FACILITIES AND INSTRUMENTATION

Wind Tunnel Characteristics

The present experiment was conducted in an open

circuit wind tunnel having a 15.4 cm diameter circular

test section and powered by compressed air. During the

preliminary portion of this experiment several

modifications were made to this facility. These

modifications and some of their effects on the initial

jet shear layer instability are discussed in Appendix A.

In its final configuration, compressed air enters an

acoustically treated upstream duct after passing through

a control valve, as well as particulate, and oil filters

all of which are acoustically treated externally. The

air then enters a large internally acoustically lined

settling chamber and encounters a series of flow

manipulators of different types and shapes before passing

through a 25:1 axisymmetric contraction having a 15.4 cm

exit diameter. The maximum flow rate through this

contraction exit was found to be approximately 16 m/s.

The flow manipulators were designed according to Loehrke

and Nagib (1972) for flow uniformization and turbulence

reduction. Information concerning the design and

construction of this facility can be found in the reports

by Ahmed, et al (1976) and Tan-atichat, et al.(1980).

With the above arrangement, a flow with extremely low

Li
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disturbance-level and internal acoustic noise is

available.

The schematic of Figure 1 shows the test section and

nozzle configuration for the various test flow conditions

which were utilized. A detailed examination of the

characteristics of these flow conditions is described in

the following chapter. The various lengths of the test

sections were formed by bolting together smaller sections

of precision machined plexiglass tubing. Two meters

above the exit of this test section, a 3m x 2m fabric

canopy was constructed to eliminate the effect of

external drafts in the room originating from the air

conditioning system. Laboratory traffic was also

controlled to further minimize any external influences on

the jet.

Nozzle Characteristics

Based on preliminary results and on the results of

Tan-atichat (1980) a nozzle with a fifth order polynomial

contour (FO) was chosen for the bulk of the current

investigation. As shown in Figure 1 the ratio of the

length of nozzle to its inlet diameter is equal to 1 and

the nozzle has a contraction ratio of 9:1. The fifth

order contour accomodates a zero slope and curvature at

both the inlet and exit of the nozzle. Tan-atichat

(1980) found that this aids in reducing both the mean

streamwise velocity overshoot and the radially inward

I-
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velocity component at the outer edge of the jet, near the

nozzle exit, as compared to a matched cubic (MC) type of

the same dimensions. The 5.14 cm exit diameter also

provides a large enough dimension compared to the exit

boundary layer thickness so that curvature effects on the

initial shear layer are small.

The exit face of the nozzle is shown full scale in

Figure 2. The lip thickness is 2.57 cm or one-half the

exit diameter. In addition, eight azimuthal pressure

taps were installed to examine the fluctuating pressure

field near the boundary layer separation point. Each

pressure tap is 1.2 mm in diameter and located 3.8 mm

away from the diameter of the nozzle exit. These

pressure taps extend approximately 2 cm into the face of

the nozzle before exiting through its side. Pressure

fittings of length 1.27 cm, and 1.6 mm O.D. (1.1 mm

4W I.D.), made from bulged stainless steel tubing, were then

glued into the side of the nozzle and extended out

approximately 6.5 mm.

J( Two other nozzles, both of which were of the matched

cubic type, were also utilized during the experiment. In

this case the profile curvature is non-zero at both the

inlet and exit. Both had the same contraction length as

the FO. One MC nozzle had a 5.14 cm exit diameter

including an identical face geometry as that of the FO.

The other MC nozzle had a 2.57 cm exit diameter and a

face lip thickness of 3.81 cm.

I'
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All of the above nozzles were designed and fabricated

during the thesis of Tan-atichat (1980). Further

information about them can be found in this reference.

Instrumentation

Both analog and digital acquisition were utilized

in this study. Digital acquisition and processing was

used exclusively in the determination of 'he statistical

characteristics of the developing jet for each test flow

condition. Analog processing along with a two channel

real time spectrum analyzer was found to be quite

.J adequate for the remainder of the study.

A single sensor hot-wire probe was utilized

throughout this experiment. The sensor diameter was

3.8 pm and had an active sensor length of 1.2 mm. The

probe body was made from 2.5 mm brass tubing. Prong tips

were made from 76 Pm jewelers broaches, 2.5 cm in length.

The prong separation at the tips was 2.5 mm. Another set

of broaches 1.2 cm in length were attached directly

behind the prongs at their base in the streamwise

direction. This improved prong rigidity without

increasing the projected prong size in the flow

direction. A single glass fiber was also attached to the

prongs near their top to reduce any prong vibration.

When off axis data was taken, the probe was oriented at

approximately a 450 angle to the streamwise direction so

that the probe body was outside the shear layer and only
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the prongs were immersed in the flow. For centerline

data, the probe was oriented in the streamwise direction

and the probe support was located approximately 70 probe

body diameters downstream of the sensor. The above probe

dimensions and sensor orientation were experimentally

determined to eliminate shear layer probe interference

problems, described by Hussain and Zaman (1978), and also

to minimize any probe vibration effects for the higher

Reynolds number cases. This if further discussed in

Appendix A.

A triaxial traversing mechanism was used to hold and

position the probe. Equipped with a digital position

indicator, it was capable of positioning the probe to

within 0.2 mm of a desired location.

Analog Signal Processing. Pressure measurements

were made using a B&K type 2209 Precision Sound Level

Meter with a 1/2 in. condensor microphone. A E&K probe

microphone kit was utilized to fit a 2 mm diameter tube,

1 cm in length, to the 1/2 inch microphone. This

arrangement was dynamically tested and found to have a

flat amplitude response over 4000 Hz which was past the

limit of the frequency range of interest. Either a

3 cm or 15 cm length of hypodermic tubing was used to

connect the calibrated sound level meter to any of the

pressure taps on the nozzle. The sound level meter was

always located at the rear side of the nozzle when using
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this configuration to ensure minimum interference. The

3 cm length of tubing was used for axial phase and

coherence measurements while the 15 cm length was

utilized for determining the azimuthal phase and

coherence. Both systems were dynamically calibrated and

peaks were observed in the amplitude spectrum

corresponding to frequencies associated with standing

waves in the pressure tap system. A small amount of

steel wool was then inserted in the hypodermic tubing to

act as damping. With the system properly damped, the

amplitude spectrum was flat to within 3db re. 2x10-5 N/m2

up to 4000 Hz. Since only streamwise gradients of phase

difference at a given frequency were to be examined, not

the absolute value, the phase transfer function due to

the pressure tap system was not accounted for in the

final results. For cases where greater amplitude

accuracy was required, the sound level meter with the

2 mm tubing was placed with minimum disturbance so that

the end of the 2 mm tubing was at the pressure tap

opening at the nozzle face thereby bypassing the pressure

tap system in the nozzle. The use of all three systems

verified the consistency of the results.

A schematic of the instrumentation used for the

analog processing is shown in Fi-are 3. The hot-wire was

powered by a DISA 55M01 constant temperature anemometer

at an over-heat ratio of 1.7 and linearized with a TSI

model 1072 Signal Linearizer. To obtain a true mean

7-
"
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velocity reading, the output of the linearizer was passed

through a voltage to frequency converter and then the

frequency modulated wave train was counted over a 10 sec.

interval. The output of both the linearizer and the

sound level meter were input to a two channel real time

spectrum analyzer (HP3582A), which computes single and

cross power spectrum along with two channel coherence and

phase functions. The outputs were also connected to a

PAR correlator.

Digital Signal Processing. As described previously,

all off axis velocity profiles and spectral

characteristics at the jet exit were acquired digitally.

A schematic of this arrangement is shown in Figure 4. A

pressure transducer monitored a pressure tap upstream of

the nozzle which was calibrated with the mean jet

velocity. Both signals were biased and amplified to

cover as much of a ±l0v range as possible to minimize

quantization error. Only lower order statistics were

required ,for the shear layer profiles, namely mean and

rms velocities. For this reason, the signals were

sampled a: a low rate of 100 Hz and a single record of

length 1700/channel was taken at each position. For

spectral surveys, the output of the anemometer was low

passed at 5 kHz and sampled at a rate of 10 kHz. One

hundred records, each of length 2052/channel, were taken

at each position. For further information about the
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digital acquisition and processing system at IIT (DAPS)

the reader is referred to Wlezien (1981).

Digitally recorded wire output voltages were then

linearized via a squared forth order polynomial as

described by Drubka and Wlezien (1979). All processing

on the digitally acquired data was performed on a

Univac-1100/81 mainframe computer.

Flow Visualization Techniques

In addition to the measurements described in the

previous section, extensive flow visualization was taken

in the Reynolds number range of 20,000 to 100,000.

Numerous smoke visualization techniques were examined

including the "smoke-wire" technique utilized at IIT

(Corke et al., 1977). It became quite apparent that two

separate non-intrusive techniques were required. The

first was to examine the evolution and three

dimensionality of the organized structures, and the

second to examine the entrainment of the surrounding

ambient air into the jet.

The first technique that was developed was the

"round" smoke wire which is a modification of the simple

"smoke-wire" technique. A schematic of this is shown in

Figure 5. A 0.13 mm Dia. stainless steel wire is placed

azimuthally around half the circumference of the nozzle

just outside the separation point. Oil is wiped on the

wire and a D.C. voltage applied across the two leads.
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The vaporized smoke is entrained near the nozzle lip and

marks the subsequent evolution of the jet. Mean velocity

profiles and shear layer velocity spectra indicated that

the developing shear layers were not affected by the

presence of this smoke wire arrangement. The secondip
technique, used either in conjunction with the round

smoke wire or separately, utilized an entrainment wire.

One end of this wire was attached approximately 1 mm from

the end of the round smoke wire at the upper portion of

the nozzle. This wire was then aligned to be in a plane

passing through the jet centerline and perpendicular to

the viewing direction. It was held taut 6 nozzle

diameters downstream and inclined at an angle larger than
J

the jet spreading rate. Oil was wiped on and vaporized,

marking a two-dimensional view of the entrainment into

the 'et. This latter method is similar to that utilized

by Moallemi and Goldschmidt (1981).

In order to extract maximum information from these

visual techniques, two separate means of recording them

were utilized. Photographic records were either taken

using a 35 mm SLR camera or using a Beckman & Whitley

high speed camera. The latter was used to examine the

cyclic evolution and interaction of the coherent

structures while the former was used to relate the large

scale structures to the dynamics of instability

processes.

!-< -'-
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Conditioned Visualization. In order to relate the

observed coherent structures to the instability process

in the jet, it was necessary to trigger a photograph when

a certain event was taking place. For example, this

event could be a large amplitude deviation away from the

long time variance, or perhaps a certain phase of a given

frequency. Conditioning schemes were designed based on

these requirements and are shown in Figure 6.

The hot-wire probe, described earlier, was utilized

as the event detector. Its position was always aligned

so that the local mean streamwise velocity was 60% of the

jet velocity. The linearized signal from the probe was

A-C coupled and amplified. At this point a choice had to

be made as to whether some characteristic of the entire

signal was to be used or whether a narrow band analysis

of the signal was needed. If a narrow band analysis was

deemed necessary, the signal was band-passed at a given

frequency which was determined from a real time spectrum

analysis. The signal was next simultaneously sent

through a variable threshold detector and also a positive

slope zero crossing detector which were constructed from

LM 322 timing chips as described by Jung (1977). Either

one of these signals could then be used as a condition

for the photographic record to be taken.

As previously discussed by Laufer (1981), the

velocity fluctuations in the initial shear layer are

amplitude modulated. In attempting to use a simple

.. .... i
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amplitude threshold on this type of signal, the phase

information is lost. To regain this phase information a

multiple conditioning scheme was utilized. The output of

the amplitude detector set an RS type flip-flop. Its

output went to an AND gate along with the output of the

zero crossing detector. Thus, if the amplitude of the

signal was larger than the threshold, the subsequent

positive slope zero crossing would give the condition.

If the signal amplitude was not large enough, the

flip-flop was reset by the original zero crossing signal

after a short time delay. In this manner the same

relative phase is maintained between selected events.

The condition pulse train could also be time delayed to

change its phase relative to the zero crossing. The

accuracy of this method for examining different phases of

the instability process is solely dependant on the

bandwidth of the signal. This accuracy decreased with
increasing streamwise position due to the increased phase

modulation. Either condition could then be used as a

condition input in the associated smoke wire electroniz3.

A typical example of this conditioned visualization

is shown in Figure 7 for a Reynolds number of 20,000.

The conditioning probe is located at x/D = 1.5 at a

radial position where U/Uj = 0.6. These photographs were

triggered on a positive zero crossing after a large

amplitude event. In this case the large amplitude event

was the merging of *wo structures which is observed



30

downstream of the prong tips. This particular

conditioning captures the initial structures one quarter

of the initial instability wavelength before they

interact. As can be seen from a comparison between these

tCwo realizations, the flow field upstream of the

conditioning probe is quite similar indicating a

consistent conditioning scheme. The evolution of the

flow downstream of the probe though is at a different

phase for each realization. Since the conditioning probe

triggers the photograph on a relative phase of zero

degrees, only phase modulation of the signal can account

for this downstream phase variation between realizations.

Inserting a time delay after the condition pulse, the

interaction could also be observed at different stages of

its development.

To properly interpret any flow visualization, an

ensemble of realizations must be examined. An unbiased

method to determine statistical information about the

visualization is to use two dimensional image processing

techniques as Corke (1981) presents. At the time of this

study, this system was not yet available. The only means

available to examine an "average" structure was to use a

multiple exposure photographic technique in a similar

manner to the flash schlieren system Moore (1976) used in

a high speed jet. This method, even though being a

biased estimator of the ensemble average, due to the

nonlinear response of the film to light intensity, yields

'i
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the average characteristics of the visualization when a

consistent triggering scheme is used.

The number of realizations needed for a suitable

ensemble, for the present technique was determined

through the following test. The number of realization on

a frame of film was varied from 1 through 16 for case IL

at a Reynolds number of 39,000. For this case the probe

was located at an x/D = 0.5 and the event was triggered

on the next positive zero crossing after the amplitude of

the signal was larger than a preset threshold level of

2u',where u' is the long time averaged rms of the signal.

These results are shown in Figure 8. As the number of

realizations is increased, the large scale structures

downstream of the first interaction become smeared due in

part to the random position of the already diffusely

marked structures. The structures before the interaction

position however, remain clearly defined for 4 or more

realizations. To minimize the nonlinear effect on the

ensemble average yet maximize the number of realizations,

it was decided to use 8 as the standard.

With the number of realizations determined, it was

necessary to find a suitable amplitude threshold value

using the same conditioning scheme as in the previous

figure. These results are illustrated in Figure 9. The

ensemble in Figure 9(a) was triggered on a random

positive zero crossing. As can be seen, the structures

are also randomly positioned and no average structure is
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evident. As the threshold level is increased, the

average structure emerges from the ensemble. The large

scale structures become better defined as the amplitude

threshold is increased up to a value of 2 u'. Increasing

this value further seems to have minimal effect on the

ensemble averaged structure. For this reason the value

of 2u' was chosen to be the amplitude threshold. A

similar threshold level dependence was found by Bruun

(1977) using a two probe education technique in a jet

with a Reynolds number of 10,000. In this case it was

determined that the amplitude threshold level was of

second order when it was between u' and 3u', and a value

of 2u' was chosen in the study.

Using the same conditioning scheme as in Figure 7,

with the conditioning probe farther upstream, a multiple

exposure photograph was compared to a single realization

for Re = 20,000 in Figure 10. In this case, the initial

threshold and number of exposures were set to the values

previously determined. With this conditioning scheme,

the first two structures are frozen in space indicating

the regularity of the event. Downstream of these

structures, where other structures have paired, one

observes a smearing of the structures due to the phase

variation as indicated by Figure 7. This smearing is not

due to a lack of coherent structures but to a random

phase variation in their position. This figure serves as

a reminder that education techniques in natural jets are
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only as good as the conditioning scheme and that the

evolution of the jet downstream of the conditioning

signal need not be phase locked to the upstream event.

To examine the cyclic behavior of the growth and

evolution of the large scale structures, high speed

movies were taken using a Beckman & Whitley model 350

high speed camera along with a model 358 electronic

flash. The electronic flash, fitted with a parabolic

reflector, gave a 11 ms flash of 3 million peak beam

candlepower output. The smoke was illuminated from above

in a plane perpendicular to the line of sight. The film

used was Kodak Recording film having an ASA of 1000 and

then further pushed to 6000.

The framing rates were dependent on the jet Reynolds

number and also the exit boundary layer state. The flash

duration and jet velocity determined the number of cycles

of the initial jet instability for the laminar boundary

layer cases. This curve is shown in Figure 11. The

framing rate utilized was a compromise between the

maximum framing rate which could be operated under the

lighting conditions and the lowest framing rate which

yielded adequate cyclic resolution of the developing

structures. This upper limit on the framing speed was

found to be roughly 4200 frames/sec at low Reynolds

numbers and decreased by 10% at a Reynolds number of

70,000. The lower limit on the framing rate was

determined by the cyclic resolution of the structures.
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This limit was determined by setting the framing speed at

least three times the initial jet instability frequency.

This gave a resolution of 3 frames/initial instability

cycle or 6 frames/subharmonic cycle. The actual framing

rates which were used are summarized in Figure 11. For

the turbulent exit boundary layer cases, the maximum

framing rate was determined to be 7000 frames/sec.

Results from the flow visualization study will be

presented throughout the remaining chapters.

-I 4
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CHAPTER III

TEST FLOW CONDITIONS

Grid Characteristics

The experimental facilities, discussed in the

previous chapter, were originally designed with a modular

concept by Tan-atichat (1980) to examine the effect of

axisymmetric straining on turbulence of different scales.

Using various grids sufficiently upstream of the

contraction he was able to develop homogeneous turbulence

before the contraction inlet. The streamwise development

of these initial conditions was carefully documented

along with the exit plane characteristics.

In the present investigation it was decided to alter

the exit plane disturbance characteristics by using

various grids while keeping the same contraction. The

cases of Tan-atichat (1980) were carefully examined and

two different grids were chosen. These correspond to

test flow conditions 2L and 3L as illustrated in

Figure 1 . The characteristics of these grids are shown

below in Table 1. Here M is the mesh of the grid,a the

solidity, t the thickness and x /M the normalized

distance between the grid and the inlet of the

contraction. For all cases examined the grids were

sufficiently upstream so that the turbulence was

homogeneous at the inlet of the contraction.
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Table 1. Grid Characteristics

Flow M o t x/M
Condition (cm.) (ri.)

2 0.635 0.34 1.19 36

3 2.54 0.35 2.10 26

The grid used in flow condition 2 was a punched

steel plate with square holes arranged in a square array.

The grid for flow condition 3 was a punched steel plate

with round holes arranged in a triangular array. Both of

these grids have a low enough solidity so that their is

no danger of them exhibiting anomalous behavior

(Tan-atichat, Nagib and Loehrke, 1981). As observed in

Figure 1, no upstream grid is used in flow condition 1.

Laminar Exit Boundary Layer

Ta obtain a qualitative feeling for the effect of

these grids on the initial development of the jet, flow

visualization for Cases 1L, 2L and 3L is presented in

Figure 12 at a Reynolds number of 39,000. The case

designations are described in Figure 1. The number

refers to the test flow configuration while the latter

refers to the state of the exiting boundary layer. Thus

as one goes from 1L to 3L at a constant Re, the



37

disturbance level in the core is increased. From Figure

12 it is observed that as the upstream flow is changed

from 1L to 3L, the initial three dimensionality of the

developing jet is increased. Before examining these

effects in detail, the jet exit characteristics must be

established for the above test flow cases.

The normalized mean streamwise velocity profiles at

the jet exit for cases IL, 2L and 3L are shown in Figure

13. These profiles are identical. Thus the test flow

condition has no appreciable effect on the mean profile

at the jet exit. The shape of this profile agrees with

the results of Tan-atichat (1980) for a fifth order

nozzle. At 80% of the jet radius there is approximately

a 4% velocity overshoot. By x/D = 0.1 for this Reynolds

number, this overshoot is no longer Gbserved.

The effect of the test flow condition on the core

disturbance level is shown in Figure 14. The disturbance

level in the core of the jet is a definite function of

flow condition as one expects. The core intensity for

case 1L is found to be 0.05% and independent of Reynolds

number. At a Reynolds number of 42,000 this value is

increased to roughly 0.1% for case 2L and further

increased to 0.16% for case 3L. The intensity for the

latter two cases were found to vary slightly with

Reynolds number. Associated with an increased core

intensity is an apparent increase in fluctuation level in

the exit boundary layer. As the core disturbance level
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increases, these fluctuations. massage the developing

boundary layer and subsequently they become internalized

in the boundary layer. The variation of the peak

fluctuation intensity in the exit boundary layer for all

laminar boundary layer flow conditions tested is shown

below in Table 2.

Table 2. Peak Fluctuation Level in Laminar Exit Boundary
Layer Cases

-3
Re x 10

Case 39 42 52 80

IL 0.014 0.011 0.012 0.054

2L 0.019 - 0.024

3L 0.051 -

These results indicate that at a constant value of

Re, the peak tluctuation level increase with increasing

flow condition designation number. The results for case

1L show that the peak intensity in the boundary layer is

invariant between Reynolds numbers of 39,000 and 52,000.

Above this value the intensity increases with Reynolds

number.

From these few observations, the main effect on the

developing jet of introducing a grid is to alter the

disturbance level in the exit boundary layer. The mean

7
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exit profiles are unchanged and it is believed that the

effect of the core disturbance level is of second order

over the range indicated in Figure 14.

The spectral characteristics and higher order

statistics of the streamwise fluctuations across the jet

exit were also examined. The velocity spectrum for each

case exhibited a smooth behavior and was void of any

spurious peaks. This was checked across the jet exit for

each flow condition. The variation of the skewness and

Kurtosis across the exit plane is shown in Figure 15.

The fluctuations for case 1L exhibit zero skewness for a

wide radial range across the jet indicating its Gaussion

nature. As the flow condition is changed to 2L and 3L,

the skewness becomes slightly negative. Near the outer

edge of the jet, i.e. approaching the boundary layer, the

skewness becomes more negative as the disturbance level

is increased. This change in skewness indicates that

large positive values of the velocity fluctuations are

not as frequent as large negative values. The Kurtosis

for all of the cases has a value of approximately 3, once

again indicative of nearly Gaussion behavior in the core.

The streamwise velocity spectra were inverse Fourier

transformed to obtain the auto correlation. The integral

time scale was computed and normalized by the jet

velocity to obtain an indication of the streamwise length

scale. The radial variation of this at the jet exit for

the three flow conditions is shown in Figure 16. These

-I
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results are consistent with those of Tan-atichat (1980).

What is interesting to note is that over 70% of the jet

diameter the length scales have a constant value. There

are only minimal differences between cases 2L and 3L.

The values for case 1L are also indicated on the figure.

It is not surprising that this case does not agree with

cases 2L and 3L since at this low core disturbance level

the fluctuations are not representative of true

turbulence, and the length scale measured is not of any

significance.

For all of the cases listed in Table 2, the

- normalized mean velocity profile of the exit boundary

layer was Blasius, having a shape factor of approximately

2.2. The momentum thickness of the exit boundary layer

was determined and is shown in Table 3.

Table 3. Variation of Momentum Thickness of Laminar
Exit Boundary Layer, in cm., with Reynolds Number
and Flow Condition

-3
Re x 10

Case 34 42 52 80

1L 0.022 0.020 0.0176 0.0145

2L - 0.0193 0.0172

3L - 0.0186 -
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Considering the data for case IL, it is observed that the

momentum thickness varies inversely as the square root of

the Reynolds Number. This once again confirms the

Blasius nature of these boundary layers. As the

disturbance level increases, the momentum thickness

decreases by 7% while the Reynolds number is kept

constant at 42,000. Even though additional data were not

taken for cases 2L and 3L, the same Reynolds number

behavior is expected since the exit boundary layer

profile is still Blasius.

The streamwise variation of the growth of the

momentum thickness of the jet near the nozzle lip region

is documented in Figure 17 for case 1L at a Reynolds

number of 42,000. Within the first 80 initial momentum

thicknesses, or approximately 0.3D, the momentum

thickness increases by 40%. This variation of the

initial momentum thickness is different than that

observed by Freymuth (1966). The development of the

normalized mean velocity profiles over this region is

shown in Figure 18. Within this region the velocity

profiles are self-similar. The data lie between the

curves for a hyperbolic tangent profile and that for a

Blasius type profile for a free shear flow. It is not

clear from these measurements which of these curves, if

either, the data actually represents. Even though the

two analytic profiles are nearly identical, they yield

vastly different amplification rates of the most unstable

p -
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eigenmode. This is due to a small difference in the

maximum slope of the curves which subsequently alters the

vorticity distribution across the layer for the stability

analysis. The normalized profiles for cases 2L and 3L

are shown in Figure 19 over this same axial range and a

similar behavior is observed.

It is very interesting to examine the deviation of

the daza away from one of the analytic functions with

increasing downstream distance. For simplicity, the

deviation of the data away from the hyperbolic tangent

function is examined in Figure 20. Here, a is simply an

indication of the average error in fitting the data with

a hyperbolic tangent function. Within the first 0.3

diameters, the value of a/26 remains essentially constant

for Case 1L. This is the same region over which the

similarity in profiles was observed in Figure 18.

Between 0.3D and 0.7D, a large deviation away from the

hyperbolic tangent profile is observed. Beyond this

region, however, the mean profiles return to nearly the

same normalized profiles as was observed near the nozzle

exit. A similar behavior is also shown for case 2L.

Data were taken for case 3L only near the nozzle lip. In

this region, it is observed that the test flow condition

has no infl.ience on the normalized mean velocity profile.

It will be shown in later chapter that the region of

large deviation is associated with the region of pairing

in the jet.

- .
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Lastly, the effect of the test flow condition on the

shear layer velocity spectrum near the nozzle exit is

examined in Figure 21 for a Reynolds number of 40,000

along U/U. = 0.6. The region below 200 Hz is first

focused on. As the core disturbances are increased,

there is an increase in low frequency spectral energy by

a factor of 10 from case 1L to 3L. Above 200 Hz, the

observed peaks in the spectra for cases 1L and 2L are

related to observed instability modes and hence will not

be discussed until later. What is important in this

figure is that the initial spectral characterisitcs of

the separated boundary layer are significantly altered by

the various test flow conditions. In fact, by changing

the flow condition from IL to 3L, there is a broad band

increase in the spectral content of the separated layer.

Turbulent Exit Boundary Layer

W In addition to the laminar exit boundary layer

cases, measurements were also carried out using fully

turbulent boundary layers. This part of the

investigation was only carried out using core flow

condition 1. In order to obtain fully developed, zero

pressure gradient, turbulent boundary layers, one of two

small straight ducts was connec.ed to the nozzle face as

indicated in Figure 1. A 5 mm wide strip of low

roughness height sandpaper was installed at the

U nozzle-duct junction. This method fixed the transition

(3
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point at this location. By the end of either duct, fully

turbulent boundary layers were established. Mean

velocity and turbulence intensity profiles along with

velocity spectra proved that the exit boundary layer was

indeed fully turbulent. A summary of the exit boundary

layer characteristics at two Reynolds numbers is

presented in Table 4.

Table 4. Variation of Exit Momentum Thickness ond Peak
Turbulence Intensity with Reynolds Number for Turbulent
Exit Boundary Layers

Re = 39,000 Re = 80,000
L/D G(cm.) (u'/Uj) e(cm.) (u'/U.)

Jmax Jmax

0.75 0.054 0.124 0.056 0.120

1.50 0.064 0.122 0.070 0.119

Due to the method of producing these boundary layers, the

exit momentum thickness was a weak function of Reynolds

number. For this reason two different lengths of duct

were utilized to vary the initial momentum thickness. At

a Reynolds number of 80,000, there exist a 25% variation

inbetween the boundary layers generated along the two

ducts.

The initial development of the jet for the case with

the short duct is shown in the visualization of Figure 22

. 2
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over a range of Reynolds numbers. Due to the highly

dispersive nature of this boundary layer, no discrete

streaklines are observed near the jet as in Figure 12.

However the development of large scale coherent

structures is clearly evident. It becomes quite apparent

from viewing these photos that a simple two dimensional

view, which would consist of examining only the upper and

lower portion of the photograph, as presented by Hussain

and Clark (1981) does not give enough information

concerning the structural behavior of the jet. A three

dimensional view is a necessity.

Finally, the mean streamwise velocity profile at the

jet exit for the short duct at a Reynolds number of

42,000 is shown in Figure 23. The velocity profile is

flat across the jet and a typical boundary layer profile

is observed at the outer edges. Properly normalized the

velocity profile for the longer duct was nearly

identical. All normalized profiles were found to be

independent of Reynolds number.

LI
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CHAPTER IV

JET DEVELOPMENT - MEAN FLOW

The basic test flow conditions have been described

in the previous chapter. From the visualization in

Figures 12 and 22, it is clear that both the initial core

conditions and the exit boundary layer conditions affect

the initial structural development of the jet. The

question is to what extent are these changes manifested

in the time-mean characteristics of the jet. This

chapter examines this question by considering the

evolution of the time averaged streamwise velocity field

both along and off the jet centerline. The measurements

presented in this chapter were acquired digitally as

described in Chapter II and utilized the 5.14 cm fifth

order nozzle.

On Centerline

The Reynolds number dependence of the streamwise

velocity component along the jet centerline is first

examined for test flow condition 1L. The mean and RMS

evolutions are shown in Figures 24 and 25 respectively,

along with the data from Crow and Champagne (1971) for a

similar exit diameter nozzle but having an initially

turbulent exit boundary layer. The centerline variation

of U/U. , Figure 24, shows that the potential core of theJ

jet extends to a value between 4 and 4.5 diameters for

the range of exit Reynolds numbers examined. This value
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agrees well with the results of previous investigations.

Over the Reynolds number range 39,000 - 52,000 the decay

of the mean velocity downstream of the potential core is

essentially unchanged. As the Reynolds number is raised

to 79,000, the centerline velocity decays at a slower

rate and is nearly identical to that measured by Crow and

Champagne. The general behavior that the decay rate

decreases with increasing Reynolds number has been

observed by Hussain and Clark (1977) in a two dimensional

jet and by Hill, Jenkins and Gilbert (1975) in an

axisymmetric jet. As demonstrated by this figure, the

sensitivity of the decay rate to Reynolds number is not

constant. It would appear then that another parameter

which maybe an implicit function of Reynolds number could

be controlling the decay rate. One such parameter is the

fluctuation intensity in the exiting boundary layer.

Referring back to Table 2 in Chapter III, it was noted

that over the Reynolds number range of 39,000 to 52,000

the peak streamwise fluctuation level in the exit

boundary layer remained between 1.1% and 1.4%. Over this

same range, the mean centerline velocity decay rate is

observed to be nearly invariant. At a Reynolds number of

79,000 though, the exit fluctuation level has increased

to approximately 5%. Correspondingly, :he mean

centerline velocity decays at a slower rate. With just

the Reynolds number behavior for one test flow condition

it is not possible to speculate on the nature of the
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asymptotic approach of-the high Reynolds number case to

the decay rate found by Crow and Champagne (1971). This

will be focused on once the remainder of the test flow

conditions have been examined. It is a rather

interesting concept however, to think that a simple

single parameter measured at the jet exit may dictate the

downstream evolution. If this concept is found to have a

solid foundation then the growth rate of the jet would

most likely scale with this same parameter.

The centerline variation of u' for case 1L is shown

in Figure 25. The magnitude of the streamwise turbulence

intensity decreases with increasing Reynolds number.

Once again, as in the previous figure, this dependency is

not uniform. The values of u'/U. in the Reynolds number

range 39,000 to 52,000 appear to be invariant. At Re

79,000, the centerline rms level drops, once again

corresponding to an increase in the peak fluctuation

level in the exit boundary layer.

These results appear to suggest that for a given

core disturbance condition the mean centerline statistics

are related to the fluctuation level in the exiting

boundary layer. As this level increases, the mean

centerline velocity decays at a slower rate, and the

streamwise turbulence intensity decreases.

If the above hypothesis is correct then by changing

the disturbance level at a constant Reynolds number, a

similar phenomenon should be observed. This is shown in
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Figures 26 and 27 where the initial boundary layer

fluctuation level is altered by changing the test flow

condition at a constant Reynolds number. The variation

of U/U. for each test flow condition at a Reynolds number

of 39,000 is shown in Figure 26. The length of the

potential core is unaffected by the disturbance level.

The decay rate, however, decreases with increasing

disturbance level. This decrease has an asymptotic value

similar to that achieved when the exit boundary layers

are fully turbulent as in test flow condition 1T, with

L/D = 0.75. As the flow condition is changed from IL to

3L, the peak intensity in the exit boundary layer changes

from 1% to 5.3% and the core disturbance level increases

from 0.05% to 0.16%. The peak intensity in the boundary

layer for case 3L at Re = 39,000 is nearly equal to that

for case 1L at Re = 79,000. Comparing Figures 24 and 26

and also 25 and 27, the mean and rms characteristics for

both cases are identical. Thus, it appears that the

centerline characteristics are highly dependent upon the

conditions of the exit boundary layer. From this data it

would appear that the influence of the core disturbance

level is of second order when it is below 0.2% for

laminar exit boundary layers.

In both figures, the asympototic values lie on the

results of Crow and Champagne (1971). The results of

Crow and Champagne were obtained in a 5.1 cm jet over the

Reynolds number range 63,000 to 124,000 and were found to
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be invariant. The, results for case-lT at. a Reynolds

number of 39,000 are identical to those. Similar results

were also found for case 1T, with L/D = 0.75, at Re =

79,000. When the centerline characteristics were
-71

compared to those obtained by Hussain and Zaman (1980)

using different sizes of nozzles, the asymptotic levels

did not agree. These results indicate that first and

- second order statistics along the jet centerline are

Reynolds number invariant, at least up to the first nine

diameters, when the exit boundary layers are fully

turbulent and similar sized jets are examined. When the

exit boundary layer is laminar, this ceases to be true.

The centerline statistics in this case are a function of

the fluctuation level of the exit boundary layer and also

probably depend on the nozzle diameter. The mean

velocity decays at a slower rate and the streamwise

turbulence intensity decreases with increasing

fluctuation level in the exit boundary layer. Above

levels of 5%, these characteristics reach an asymptotic

behavior which coincide with the fully turbulent boundary

layer.

Off Centerline

Having examined the centerline characteristics of

the jet, the mean characteristics off axis are now

investigated. To describe the developing axisymmetric

mixing layer, a suitable length scale must be utilized.

Iq
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A number of investigators have utilized various length

scales in the study of two-dimensional mixing layers.

Some involve the use of the downstream distance from the

virtual origin while others use a length scale which

characterizes the local velocity profile. The only

detailed measurements in an axisymmetric shear layer,

however, were carried out by Hussain and Husain (1980)

and by Husain and Hussain (1979). The local vorticity

thickness and also a measure of the momentum thickness,

00.1 , where

YO.
1

e.1 f [U/Uj] [l-U/Uj dY

0

were both used in their investigation. In this case the

integration was terminated at YO.0 1 the radial position

where the local velocity is 10% of the jet velocity, in

order to reduce hot-wire rectification errors on the loww

speed side of the jet. It was decided to use this

variable as the length scale for this investigation in

order to compare the present results to those of the

above authors.

In order to most accurately evaluate this parameter,

the measured jet profile at any downstream location was

fit with a cubic spline with a small amount of damping to

give a smooth analytic profile. The data were always

compared to the analytic profile to ensure that the

profile accurately described the data. With this

1

--i



52

analytic function the upper limit in the integral could

be determined exactly. The analytic profile was then

numerically integrated.

The variation in the maximum streamwise turbulence

intensity with downstream distance is first examined in

Figure 28 for the four test flow conditions at Re =

39,000. When the initial boundary layer is laminar, the

initial intensity peaks near x/D = 1.5 due to a large

amplitude growth which is associated with an instability

mechanism as will be shown in later chapters. 'This

intensity reaches a maximum value and then decreases to

an asymptotic value. The growth of the shear layer can

be considered self-similar in terms of streamwise

turbulence intensity when this value is reached. In the

case of the turbulent exit boundary layer the shear layer

is not able to sustain the same level of instability

mechanisms under natural conditions. In this case the

magnitude of (u'/U.) increases monotonically to an
jmax

asymptotic value. As shown in this figure, the maximum

intensity for case 1T, with L/D = .75, has just begun to

reach an asymptotic value by 5 diameters. However, by

this axial distance the mixing region can no longer be

considered a single axisyrmxetric shear layer but rather a

mixing layer interacting with itself as seen by the

disappearance of the true potential core in Figure 26.

This behavior for initially laminar and turbulent

boundary layers has also been observed by Husain and

-4
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Hussain (1979), Yule (1978) and Bradshaw (1966), among

others.

From Figure 28 it is noted that the asymptotic value

of the maximum streamwise turbulence intensity is a

function of the initial flow condition. When the initial

boundary layer is laminar, this value decreases from a

value of 0.173 for an exit boundary layer peak

fluctuation level of 1.2% to a value of 0.157 at an exitw
boundary layer level of 5.1%. For this case? the final

asymptotic value is identical to that when the initial

boundary layer is turbulent. Similar results were found

for case 1L as the exit Reynolds number was increased.

At Re = 79,000, the asymptotic value was found to be

0.157, which is identical to that observed in case 3L at

Re = 39,000. The asymptotic value of (u'/U.)Max over the

Reynolds number range of 39,000 to 52,000 was found to

vary from 0.173 to 0.168. Over this range the peak

intensity in the boundary layer changed by less than 1%.

The centerline characteristics were found to be

independent over this range and the asymptotic peak

intensity was also found to be essentially constant.

These results are in complete agreement with the

centerline characteristics and once again indicate that

the condition of the exit boundary layer is firmly liinked

to the downstream mean jet evolution.

The above dependence on exit intensity is

contradictory to those of Hussain and Zedan (1978). In
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their work they showed that the asymptotic peak

turbulence intensity increased monotonically with maximum

intensity of the exit boundary layer, and that this

maximum asymptotic value was limited to value of about

0.18. It was also determined that this asymptotic value

was independent of initial momentum thickness. For their

operating conditions, the peak exit boundary layer

intensity varied between 8% and 17%. In the present

case, the intensity of the exit boundary layer was

changed by either changing the jet Reynolds number or by

changing the core disturbance level characteristics. It

was shown that both methods yielded consistent results.

Values of maximum intensity in the exit boundary layer

varied from 1% to 5%, much lower than those used by the

above authors. However, it is not believed that this

difference in exit fluctuation level would cause the

difference in trends due to the asymptotic behavior

between cases 3L and 1T. This point will be examined in

further detail in the latter part of this chapter.

The normalized mean and RMS velocity profiles for

the four test flow conditions at Re = 39,000 are shown in

Figures 29 through 36. In Figure 29, the mean velocity

profile attains a self similar form by approximately 1.5

diameters downstream of the exit. Based on the results

of Figures 28 and 30, the streamwise intensity reaches

self similar form by 2 diameters. In this case the mean

and RMS velocities become self similar at approximately
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the same position. This was also observed by Hussain and

Zedan (1978) as long as the exit boundary layers remain

laminar.

The development of the velocity profiles for case 2L

is shown in Figures 31 and 32. As in the previous case,

the mean velocity profile becomes similar by two

diameters. This is also borne out in the similarity of

the streamwise intensity in Figure 32. The same is true

for case 3L shown in Figures 33 and 34.

The shapes of the normalized velocity profiles for

cases IL, 2L and 3L are identical when Figures 29, 31 and

33 are examined closely. When Figurer *, 32 and 34 are

examined, the profiles for the streamwise intensity are

also nearly identical. There are two differences clearly

visible in this case however. First, the maximum

intensity in the self preserving region decreases with

increasing disturbance level and secondly, the shape of

the peak in the profile flattens and becomes broader as

the disturbance level increases.

The normalized velocity profiles for case 1T are

illustrated in Figures 35 and 36. In this case the mean

velocity has already reached self similarity by one

diameter. The streamwise intensity profiles however

appear to be reaching self similarity by 4 to 5 diameters

as described earlier. When these profiles are compared

to those of the three test cases which had laminar exit

boundary layers it is observed that all cases exhibit

Ao
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nearly identical self similar profiles for the mean

velocity when scaled with a thickness parameter based on

the local mean velocity profile. The shape and width of

the streamwise intensity profiles are also identical

between the four test cases. The differences here lie in

the value of the maximum amplitude and also the curvature

of the profile at the maximum amplitude. This

observation was also made by Browand and Latigo (1979) in

a two-dimensional mixing layer.

Hussain and Zedan (1978) show a distinct difference

in these profiles however, with the most differences

arising between the turbulence intensity profiles.

In the previous series of figures, the radial

coordinate was normalized by a thickness parameter, %0.i'

which was a characteristic of the local mean profile.

The downstream growth of this parameter, indicating the

entrained flow into the jet, is examined next. The

growth of this parameter for the four test flow

conditions at Re = 39,000 is shown in Figure 37. At one

diameter, the shear layer is initially thickest for the

turbulent boundary layer and thinnest for the low

disturbance level case. This is due to the difference in

the initial momentum thickness. As the shear layer

develops downstream, 0 increases linearly with axial

distance. The low disturbance level case corresponds to

the largest growth rate. When the free-stream

disturbance level is increased, leading to an increase in
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the boundary layer fluctuations, the corresponding growth

of the shear layer decreases. The lowest growth observed

in Figure 37 corresponds to the case when the exit

boundary layer is fully turbulent.

The question is what structural characteristics of

the developing shear layer are responsible for the change

in growth observed in Figure 37. To examine this

question, flow visualization of the entrainment process

was carried out and a few of the results are displayed in

Figure 38. The first observation that can be made is

that for cases lL, 2L and 3L, there is no significant

visible entrainment into the jet until the vorticity

wave, as marked by the smoke from the round smoke wire,

becomes nonlinear and rolls up. After this region, smoke

is quickly entrained into the jet through the induced

velocity field of these structures. One would expect

therefore that the growth of the layer would sharply

increase here. This will be quantitatively documented in

a later chapter. Another observation from this figure

and Figure 12 is that as the disturbance level is

increased, the initial structures become more three

dimensional and weaker. This weakening is observed by

ki the decrease in the penetration of the entrained air into

the mixing layer. Consequently, if the dynamics of the

large scale structures are responsible for ingesting a

4large fraction of the total entrained air, as is

certainly evident in the near region, any alteration of



58

its coherence or strength will alter the entrainment and

hence the shear layer growth.

In the case of 1T, there is no structure visible

having any azimuthal coherence within the first two

diameters as indicated by the smoke density from the

round wire or from the trajectory of the smoke streaks

from the entrainment wire. From the previous figure the

growth rate is observed to be approximately 40% larger

for case IL than for case IT. The difference in the

growth of the shear layer must then be partly due to the

lack of the strong entrainment process from the large

scale structures observed in case IL. It is evident that

the method of entrainment into the jet in the first few

diameters is substantially different between the

initially laminar and turbulent exit boundary layers.

The growth rate for these cases as a function of jet

Reynolds number was calculated using a linear least

squares technique and is displayed in Figure 39. The

behavior of the growth rate at Re = 39,000 was just

described. These values vary from 0.024 for case IT to

0.038 for case IL. For case IL, the growth rate

decreases as the Reynolds number increases until an

asymptotic value of approximately 0.03 is reached. The

variation for case 2L is less, in this case reaching an

asymptotic value of 0.028. Upon examination of case IT,

the growth rate is found to be independent of Reynolds

number and have a value of 0.024. This similarity in

o-4
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* growth rate for this case was also observed in the

similarity of the centerline profiles as well as the

shear layer profiles as described earlier.

As Re increases, the difference in growth rate for

the four test cases diminishes. The conditions depicting

this trend for case 1L are visualized in Figure 40. At

lower values of Re, the initial large scale structures

are a dominant feature of the flow. When this structure

is responsible for entraining ambient air, the streak

lines from the entrainment wire will have regions where

they converge. Examination of the highest Re case shows

that this type of entrainment is visible only near the

nozzle lip. Farther downstream the streaks become

reminiscent of case IT where the streaks are more

uniformly entrained into the flow. Even when the large

scale structures are observed farther downstream, where

the bulges into the entrained smoke are noticed, the

streak paths are fairly linear indicating that only weak

entrainment by these structures is present. The

structural characteristics of the developing shear layer

is clearly Reynolds number dependent unless the exit

boundary layers are turbulent or unless a sufficient free

stream disturbance level is added, which acts mainly

through the boundary layer, to weaken these initially

laminar structures.

Earlier in the chapter, it was observed that the

asymptotic peak intensity in the shear layer decreased
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with an increase- in the peak fluctuation level in the

exit boundary layer. The centerline mean velocity was

also found to decay slower with increasing fluctuation

level in the boundary layer and to be independent of the

initial momentum thickness. The dependence of e0. 1 1 on

this disturbance level is replotted in Figure 41 for all

test flow conditions and Reynolds numbers tested. The

growth rate decreases monotonically with increasing

fluctuation level in the exit boundary layer. This

single curve includes a wide range of Reynolds numbers,

initial boundary layer momentum thicknesses, laminar and

turbulent exit boundary layers, different core

disturbance levels, and also different disturbance

scales. Amazingly, the growth rate of the jet appears to

be represented by a single parameter, that being the

boundary layer fluctuation level. This result is

consistent with the mean and rms centerline

characteristics described earlier.

Work by Browand and Latigo (1979) in a two

dimensional mixing layer show the growth rate of an

initially turbulent boundary layer to be 40% lower than

that of an initially laminar boundary lfyer. Even though

their experiment was strictly two-dimensional and

operated at a velocity ratio of 0.7, the qualitative

nature of the results are still valid and agree with the

present results. These results though are contradictory

to those of Hussain and Zedan (1978) who show that the
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growth rate of an initially turbulent boundary layer is

larger than that of an initially laminar boundary layer.

This is shown in Figure 41 where their data has been

included. At a boundary layer fluctuation level of 0.06

both sets of data are in good agreement. Hussain and

Zedan (1978) show no data below this level though. Above

this level, both sets of data diverge.

With the computation of the growth rates in Figures

39, the virtual origin of the initial shear layer, xo ,

was determined and is shown in Figure 42. For all cases

except Case IL at Re = 39,000 the virtual origin is

located upstream of the nozzle exit. Similar results

were found by Hussain and Zedan (1978). However, the

nature of the trend of x0 is once again contradictory.

Wygnanski and Fiedler (1970) and Batt (1975) also show

that the virtual origin is upstream of the nozzle exit

when the initial boundary layers are turbulent, agreeing

with the present results.
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CHAPTER V

JET DEVELOPMENT - UNSTEADY FLOW AND INSTABILITIES

In the previous chapter the time mean

characteristics of the developing jet were examined for

different initial core and exit boundary layer

conditions. Before considering a detailed examination of

the instability mechanisms involved in each of the above

cases, a few general observations will first be made

concerning the nature of the instabilities found in the

initial jet region both on and off the jet centerline.

These developing instabilities are vortical in nature.

As these vorticity waves develop spatially, there is a

definite pressure field associated with this growing

vorticity field. This pressure field may be an efficient

radiator so that it is felt back at the boundary layer

separation point. If so, then depending on the strength

of this field and on the internal disturbance level of

the exiting boundary layer, this irrotational pressure

field may act as a natural excitation to the jet.

Velocity fluctuations associated with this disturbance

field would subsequently grow exponentially, superimposed

on the naturally developing eigenmode. General

observations will be made about the nature and

identification of the instability modes along with their

relation to the near-field pressure.
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Laminar Exit Boundary Layer

In Chapter III, three test flow conditions were

described which had laminar exit boundary layers. For a

given value of Re, the fluctuation level in these

boundary layers could be altered through the use of

suitable grids located upstream of the contraction which

also altered the core disturbance characteristics. In

this chapter the Reynolds number is typically fixed at

42,000 and the effect of changing the initial jet

characteristics on the spectral development of the jet is

examined.

The characteristics of test flow condition 3L which

corresponds to the highest flow disturbance case is first

examined in Figures 43 and 44. In each figure, the axial

development of the streamwise velocity spectrum, shown in

an arbitrary scale, is displayed along with the coherence

between that velocity signature and the irrotational

pressure field outside the nozzle lip taken at a relative

angle of y = o (see Figure 2). The off axis development

is first examined in Figure 43. In this case the radial

location is adjusted at each streamwise position so that

the local mean velocity is 60% of the core velocity.

This radial position is at the peak turbulence intensity

as observed in Figures 33 and 34.

Initially, the u velocity, shown here in log

amplitude, is characterized by a uniformly decreasing

spectrum which is reminiscent of a typical turbulent

(t1
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signal. The initial boundary layer is however laminar.

With these initial conditions, there is virtually no

coherence between the initial velocity fluctuations in

the shear layer and the pressure field near the

separation point. The only significant coherence which

is observed at this location is found at frequencies of

approximately 730 Hz and 880 Hz. By an axial position of

0.5 diameters, a large broadband increase in the

streamwise velocity spectrum, shown here in linear scale,

is observed between 600 Hz and 1000 Hz in which four

distinct spectral peaks are observed. Two peaks occur at

frequencies of 730 Hz and 880 Hz, which are the

frequencies at which a weak coherence was observed at x/d

= 0.2. A third peak is observed near 1000 Hz. For each

of these peaks, a coherence is observed between the

velocity fluctuations at this axial position and the

pressure field just outside the nozzle lip separation

point. Clearly, these instability modes are radiating a

pressure field which is felt at the separation point. At

this same axial position a small spectral bump is

incipient near 370 Hz. This is more clearly observed in

the peak coherence around this frequency. This

corresponds to the subharmonic mode of the 730 Hz peak.

It should be noted that the subharmonic mode does not

appear until the fundamental reaches a finite amplitude

for this particular test flow condition. This is what

has been typically observed in the literature.
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By a value of x/d = 0.6, the peaks at 730 and 880 Hz

remain and the first subharmonic of 730 Hz becomes more

distinct along with a strong increase in the value of its

coherence. This peak then continues to grow while the

two high frequency peaks decay. By one diameter, the

spectral peaks have vanished and the shape of the

spectrum is slowly returning to its random nature as

previously observed at x/D = 0.2. At one diameter there

is still a weak coherence between the subharmonic mode

and the nozzle lip pressure field even though the

spectral peak has been smeared out by the background

fluctuations.

The spectral characteristics along the jet

centerline are shown in Figure 44. The first streamwise

position here corresponds to the last position examined

in the off axis case. At x/D = 1 the subharmonic mode is

clearly evident along with its high coherence. With an

increase in streamwise distance, both the spectral peak

and high coherence decay. At x/D =1, another broad band

spectral peak which has significant coherence is observed

near 140 Hz. As the streamwise distance is increased,

the coherence of this mode slowly diminishes and a broad

band spectral peak emerges near 100 Hz. This mode does

not appear to be related to the initial peak near 140 Hz

since the coherence at this frequency is away from the

new spectral peak at this axial position.

The nature of the off axis spectrum is extremely
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similar to that observed by Husain and Hussain (1979) in

their naturally developing jet. Similar multiple peaks

were observed but were not focused on in their study.

The asymptotic value of u'/Uj which they found off axis

was 0.159, nearly identical to the value that was

determined in Chapter IV for Case 3L. The measured jet

growth rate was also nearly identical to that measured

for this case. It seems that the experimental test flow

condition of theirs (exit core intensity = 0.34%) is

extremely similar to the present highly disturbed test

flow.

A single realization of the structure of the flow

for test flow 3L was shown in Figure 12. For this

initially high disturbance level flow condition, the

initial roll up is highly three dimensional. From this

single realization it is unclear as to whether there is

any further organized motion present. To examine this in

greater detail, a high speed visualization sequence taken

at a Reynolds number of 42,000 is shown in Figure 45.

The outer region of the initial jet rolls up near a value

of x/D = 0.5 and is highly three dimensional.

Corresponding to this position, a broad band increase in

spectral energy from 600 Hz to 1000 Hz was observed in

Figure 43. This frequency range is clearly related to

the initial jet instability. As these structures move

downstream, pairing is clearly observed. From Figure 43,

it is noted that this sequence is related to the spectral

-h- . , " - * ' - * - --- - - , ' -
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development of the 360 Hz mode.

From the visualization it is evident that the

pairing mechanism takes place even in this highly

disturbed flow condition. This would account for two of

the spectral peaks in Figure 43, i.e., 730 Hz and its

first subharmonic. There still remain numerous peaks

which must be examined. Before examining these in

greater detail, let us focus our attention on the nature

of the peaks at 730 Hz and 880 Hz. With the hot-wire at

x/D = 0.5 and at the same radial position as in Figure

43, the phase spectrum was determined between the

velocity at this position and the pressure field at the

nozzle lip as a function of azimuthal separation angley

The hot-wire remained stationary while the pressure

readings were obtained circumferentially around the jet.

The variation of the azimuthal phase difference of these

two modes is shown in Figure 46. The top curve

represents the 730 Hz mode. In this case the phase

difference is essentially constant, indicative of an

axisymmetric mode as described by the ideal m=0 curve.

Here m is the azimuthal wave number. This result is not

too surprising in light of the observed subharmonic for

this mode. Since the subharmonic generation is related

to the pairing activity and ideally the pairing in a jet

is an axisymmetric phenomenon, the axisymmetry of the

fundamental mode is not unexpected. This axisymmetric

mode is referred to as fif"

C'
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The bottom curve examines the azimuthal structure of

the 880 Hz mode. In this case the phase difference

varies around the jet reaching a value of 1800 at a value
0

of y of 180 . Included in this figure is the ideal phase

variation for the first helical mode, m = 1. It is quite

evident that this peak at 880 Hz is the first helical

mode. This mode is denoted by f . The azimuthali,0
variation will be examined further in Chapter VIII.

Even though the measurements unquestionably show the

appearance of the first helical mode, it was not observed

in the flow visualization sequence in Figure 45. Indeed,

further visualization showed that the axisymmetry of the

flow was non-stationary. The flow alternated between

initially axisymmetric and helical disturbances.

Unfortunately, long enough observation times were not

recorded to obtain a convergent estimate of the

percentage of occurance of each flow state. From this

initial observation that both axisymmetric and helical

modes are present for this flow condition, it becomes

quite evident that the initial instabilities in a jet

cannot be thought of in terms of developing from a

quasi-two dimensional shear layer.

From this figure and Figure 43, both the

axisymmetric and helical modes for this flow condition

appear to have similar growth rates; a result predicted

by Michalke (1971) and by Mattingly and Chang (1974).

What is important though is that these modes develop at
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different frequencies. In fact, this difference is

nearly identical to that predicted by Mattingly and Chang

(1974). Based on Figure 43, the helical mode develops at

a frequency which is approximately 20% larger than that

for the axisymmetric mode. Because of this frequency

difference and the nearly equal amplitude growth, the

possibility of encountering a nonlinear interaction

between these modes exists, particularly in the switch

over from the m=o mode to the m=l mode. This conjecture

is examined in further detail in Figure 47 where a

detailed streamwise velocity spectrum, taken at x/D = 0.5

and at a radial position of U/U. = 0.6 is presented for aJ

Reynolds.number of 50,000. Four sharp spectral peaks are

observed at this position: the initial axisymmetric mode,

the initial helical mode, the first subharmonic of the

axisymetric mode and also amode which exactly

corresponds to the difference between the axisymmetric

and helical modes. In addition to these, other modes are

observed which are the multiple sum and difference modes

between f. and f and also between 1/2f. and
1,0 il 1,0

(f. -f. ) Based on the results of Miksad (1973), it
I'l 1,0

is clear that there is a nonlinear interaction between

the axisymmetric mode and the helical mode. It also

appears that there may also be a nonlinear interaction

between the subharmonic mode and a low frequency mode

which has evolved from the initial nonlinear interaction
co

between the axisymmetric and helical modes. This point

*J
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will be taken up later.

There are a few differences which exist between the

present case and that of Miksad (1973) so that a direct

comparison is not rigorously possible. In this naturally

developing case the interaction is between planar and

nonplanar waves. The effect of different azimuthal modes

interacting to produce nonlinear modes has not been

previously addressed. It is expected however, that their

features are not grossly different from those of the

strictly two dimensional case. The second difference is

that in this unforced case, the m=0 and m=l modes do not

usually coexist. Mode switching is observed and its

effect on the development of the nonlinear modes is

unclear.

Having examined test flow 3L and identified the

major spectral peaks, a few general observations will

next be made about the influence of the disturbance level

on the instability characteristics of the jet. Test flow

condition 2L is presented in Figures 48 and 49. The off

axis characteristics are first examined for a Reynolds

number of 42,000 at a radial position where U/U. = 0.6.J

Initially at x/D = 0.2 the axisymmetric, helical and

subharmonic modes are observed in the coherence along

with all of the nonlinear interactions previously

described. At this early station the velocity

fluctuations in the shear layer for the above modes are

strongly correlated to the pressure field at the nozzle
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lip. The modes which are already observed as discrete

spectral peaks are f and its subharmonic. Here the

subharmonic mode has a slightly higher amplitude. This

early occurance of the subharmonic mode before the jet

develops was not seen in case 3L. Due to the high

coherence it must be related to the sensitivity of the

exiting boundary layer to the near field pressure. By

x/D = 0.5, the initial axisymmetric mode has grown to a

value much larger than its subharmonic. This is a result

which is expected based on the simple linear spatial

theory of Michalke (1971). In this case the helical mode

does not amplify to as large a level as was observed in

case 3L. This mode however is there and is clearly

observed in the coherence and the indicated difference

modes. At x/D = 0.75 the subharmonic mode has grown and

has over taken the amplitude of the initial

instabilities. By one diameter the spectrum becomes

quite random. Even at this downstream position there

remains a strong coherence in the difference mode and

weak coherence at the subharmonic mode.

The centerline characteristics are next considered

i1 Figure 49. At one diameter, which was the last off

axis position discussed, there exists spectral peaks and<U

high coherence in the subharmonic mode and the

(f. -f ) mode. As the axial distance is increased,
1,1 i,O

there is spectral broadening of the modes along with a

decrease in the coherence. Even at five diameters there
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is still a non zero coherence. The (f. -f ) mode is
1,l i,0

clearly identified in the velocity spectrum and is

coherent with the near field pressure even at five

diameters. As the axial position is increased from one

to five diameters, a gradual growth in spectral energy is

observed near 100 Hz, reaching a maximum value at five

diameters. Normalizing this frequency with the diameter

of the jet and the jet velccity, it is found that the

nondimensional Strouhal frequency has a value of 0.42.

It is more evident here than in the previous case that

this mode develops independently of the nonlinear mode

(f. -f )" This is the final jet-core Strouhal

frequency, sometimes called the preferred mode, Crow and

Champagne (1971) and Hussain and Zaman (1981) or column

instability, Kibens (1978). Its characteristics are

discussed further in a subsequent chapter.

Having examined cases 2L and 3L, we next consider

the lowest disturbance level case, flow condition 1L.

The measurements presented here are at the same Reynolds

number and radial position as for the results for cases

2L and 3L. The off axis characteristics are shown in

Figure 50 and the centerline characteristics are shown in

Figure 51. The off axis development is similar to that

of case 2L with a few exceptions. Below 300 Hz there is

a large increase in the observed coherence due to a

decrease in background fluctuations in the boundary

layer. At x/D = 0.2, strong coherence is observed for
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all modes. In this case the highest spectral amplitude

occurs at the difference mode of (fi - f. ). The

amplitude of the subharmonic mode is lower and the

amplitude of the fundamental is lower yet. The drastic

difference between the behavior here and that for case 3L

at'the same axial position is due only to a slight

difference in the core intensity and more important, in

the spectral content of the initial boundary layer. Test

case 3L is probably typical of many of the flow

conditions existing in jet research facilities. By

reducing this level slightly, a clearer picture of the

instability characteristics can be examined without being

masked by the background fluctuations.

The second difference between the three test cases

lies in the absence of a large, amplitude peak

corresponding to the helical mode for case 1L. However,

if the coherence function is carefully examined at a

frequency 20% higher than fi, a strong peak exists.

This is the helical mode. This is also noted by the

occurance of the nonlinear interaction modes.

As the disturbance level decreased, the amplitude of

the helical mode also decreased perhaps indicating less

time in this state. It is quite possible then that even

though both the axisymetric and helical modes are

initially present, the selection and early amplification

of the helical mode is dependent on the initial

disturbance characteristics.

C.



74

The centerline characteristics, described in Figure

51 clearly show the same phenomena as in case 2L. The

interesting point in this figure is to examine the

spectral development near 100Hz. At x/D = 1 no discrete

spectral peak is observed at this frequency although a

coherence of approximately 0.2 is observed. By two

diameters a large amplification has been observed

relative to the 170 Hz peak. This mode finally evolves

to a distinct peak at x/D = 5. The Strouhal number of

this mode is 0.42. This is the evolution of the long

wave jet instability, discussed in Chapter I, and it is

quite apparent that it develops as the other jet

instabilities are forming. What is surprising is that

even at five diameters there exists a significant

non-zero coherence between these velocity fluctuations

and the pressure field at the nozzle lip. This low

frequency pressure field could lead to the low frequency

modulation of the initial shear layer that Laufer (1981)

discusses.

Both axisymmetric and helical modes are present in

this flow as demonstrated by visualization records such

as those of Figure 52. These photos were taken at a

Reynolds number of 42,000. The top photo was conditioned

on the subharmonic spectral peak. As can be seen, this

corresponds to an axisymmetric mode. The bottom photo

was taken randomly in time and clearly illustrates both

the helical nature and its change back to an axisymmetric

-
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mode. This occurance is rare as was represented by the

low amplitude of the helical mode in the velocity

spectrum.

Turbulent Exit Boundary Layer

Having examined the general characteristics of the

instability process when the boundary layer is initially

laminar, we next focus on the case when the exit boundary

layers are fully turbulent. Results for this are shown

in Figures 53 and 54. The off axis streamwise velocity

spectrum for Case 1T, with L/D = 0.75, at Re = 42,000 is

shown in Figure 53. Initially the boundary layer is

fully turbulent as observed by its monotonically

decreasing spectrum along with the documentation in

Chapter III. A short distance from the lip, at x/D =

0.1, a broad spectral peak is observed to form near

600 Hz. This peak was observed at all radial positions

outside of the core. The location of this peak will be

shown in Chapter VI to correspond identically to the peak

value obtained from the pressure measurements at the

nozzle lip. The frequency of this peak decreases

inversely as the axial distance is increased until by one

diameter, a peak at the longwave jet Strouhal frequency

is observed. The development of the centerline

streamwise velocity spectrum is shown in Figure 54. In

this case, only one spectral peak is observed at any

axial position, and that one peak corresponds to the
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downstream jet Strouhal frequency. Even at x/D = 0.1,

this mode is observed on the centerline.

The development of this mode is similar to that

observed when the initial boundary layer is laminar. In

that case it was also determined that the evolution of

that mode was separate from the initial instabilities of

the jet. The emergence of this longwave instability is

independant of the state of the initial boundary layer.

The value of its Strouhal frequency though is probably

dependent on the initial momentum thickness of the jet.

The observation of the independence of the state of the
initial boundary layer was recently recorded by Hussain

and Zaman (1981) and is further confirmed here.

When the jet has initially laminar boundary layers,

both axisymmetric and helical modes are present. The

question which now must be asked is what is the azimuthal

nature of this long wave instability. The development of

this mode is visually observed in Figure 55. This figure

shows two realizations of the jet having initially

turbulent boundary layers at a Reynolds number of 75,000.

In both cases the initial development of this mode is

axisymmetric. By two diameters the mode changes to a

helical nature. This behavior was predicted by Mattingly

and Chang (.974). Close to the jet the dominant

instability mode is axisymmetric. As the jet grows, the

momentum thickness increases and the helical mode emerges

as having the largest growth rate. This behavior is-

*q * - *.. . . . . . ..-.
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clearly demonstrated in this figure. Such a comparison

between the theory, which uses an initial laminar

boundary layer, and the turbulent boundary case is valid

only because of the nearly identical self preserving mean

profiles as indicated in Figures 29 and 35. Once this

helical mode has developed, it remains the dominate

instability, perhaps even past the end of the potential

core.

0

U
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CHAPTER VI

NEAR-FIELD PRESSURE OF INITIAL JET

In the previous chapter the general characteristics

of the jet instabilities were examined. In all cases

there was a definite, and in some cases strong, coherence

between the velocity fluctuations in the jet and the near

field pressure. Thus the pressure field associated with

the evolving vorticity field of the instability modes in

the jet must be felt back at the nozzle lip. Depending

on the characteristics of this pressure field and the

nature of the disturbances in the exiting jet, this field

may act as a natural small amplitude external excitation

to the jet, i.e., a self-excited jet.

A subharmonic feedback mechanism in naturally

evolving jets has been speculated by Gutmark and Ho

(1980) and by Laufer (1981) to be a phase bearer and the

mechanism for vortex pairing. Before considering how

these speculations fit into the overall picture developed

from the present results, a detailed examination of the

pressure field at the nozzle lip is first undertaken.

Once this has been presented, the interaction between the

pressure field and the developing instabilities in the
jet are explored in the following chapter.

Scaling of Initial Axisymmetric Mode

If it is assumed that the generation of the initial

free eigenmode of the jet is unaltered by the downstream
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developing vorticity field through an unsteady pressure

field at the nozzle lip, then for cases where the exit

boundary layer thickness is small compared to the jet

diameter, i.e. D/O > 50, (Michalke, 1971), linear

stability theory, using parallel flow assumptions, would
predict that the instability mode would scale with the

momentum thickness of the exit boundary layer at a

constant Strouhal number, St . This result is applicable

to laminar boundary layers and perhaps also to turbulent

boundary layers. As Crighton (1981) states, "if the

scale of the turbulence is small compared to the

wavelength of the initial instability mode", this

condition may be satisfied.

In cases where the boundary layer is laminar, the

exit boundary layer momentum thickness is inversely

proportional to Re. This was confirmed in Chapter III.

Since

St 8 = CONST.e (VI-l)

then

St * D/e a e- 1

or

St a R (VI-2)

This result shows that in cases where the exit boundary

layer is laminar, and when a linear instability mechanism

is acting to select the most unstable mode, the initial

Strouhal frequency is proportional to the square root of

the jet Reynolds number.

- i - ~ .- - j - -
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Mattingly and Chang's work (1974) examining the

linear stability of axisymmetric jets brings out a number

of enlightening points. Using a family of measured

profiles to describe the mean velociy distribution of the

jet, it was determined that for initial boundary layers
which were thin compared to the jet diameter, both the

axisymmetric and first helical modes had nearly the same

amplification rate and occurred at frequencies that

differed by 17%. It was documented in the previous

chapter that the helical mode developed at a frequency

approximately 20% higher than that of the axisymmetric

mode. This result clearly showed that the initial jet is

equally sensitive to both axisymmetric and helical

disturbances. Since both modes were fournd to have nearly

equal growth rates, extra information is necessary to

determine the conditions under which one mode may

dominate. It was also observed that the growth of the

helical mode was tied into the disturbance

characteristics in the jet initially. In the lowest

disturbance level case, the helical mode was only

observed through the coherence measurement. No large

discrete spectral peak was measured. Thus, single

channel spectra may not always be sufficient to determine

these modes,

In much of the literature on axisymmetric jets

neither the initial conditions across the jet nor the

initial off-axis characteristics are well. documented.
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Recently Kibens (1981) documented the initial instability

frequency characteristics for a 2.54 cm and a 6.33 cm

jet, using hot-wire measurements, and found that in both

cases the initial jet instability scaled with Equation

(IV-2).

On the other hand, Gutmark and Ho (1980) in an

axisymmetric jet showed that the initial instability

frequency (and not the Strouhal frequency) does not

increase monotonically with increasing Reynolds numbers,

but rather was found to be stepwise. Ho (1981)

determined that the occurrence of the steps was due to a

low level spatially coherent acoustic excitation which

was developed within the settling chamber. The original

speculation was that the stepwise increase was a result

of satisfying the feedback condition described in

Chapter I. It will be first shown that the original

speculation had no grounds and the observed steps had to

be related to an acoustic disturbance as Ho found. To do

this the characteristics of the feedback condition are

first examined.

If the restriction that only axisymmetric modes are

allowed, then according to Ho and Huang (1981), the

number of waves in a feedback loop should be an integer.

x x
1 f. [ + ] =N(VI-3)1,0 c a2 r

where x is the position of the first vortex merging, -
m r



*. J,.. ... . .. . -,,, * : , .. . * .- -, - . .- - < ,: . .  . < ..> :  :

82

is the dimensional phase speed of the subharmonic, a is

the speed of sound and jfi the subharmonic frequency.i,0

For typical experiments in the moderate Reynolds number

range, a>> so that Equation (IV-3) simplifies to

x 2Ncm r-D =f. D
1,0

In a jet, Gutmark & Ho (19080) found N to have a value of

one. The effect of dropping the second term on the

concept of a feedback loop is considered in Chapter XI.

It will be shown in Chapter VII that

C= 0.5 u.
r

With thls, Equation (IV-4) becomes

x
m. N (VI-4)

St.
D '

This shows that the pairing location is inversely

proportional to the initial Strouhal frequency.

The original speculation about the stepwise behavior

of the initial instability frequency centered about the

idea of the location of the pairing fixed in space. If

this was the case, from Equation (VI-5) it is observed

that the initial Strouhal frequency would be stepwise and

not the initial instability frequency. In fact the

results of Peterson (1978) show that the completed

pairing position was indeed inversely proportional to the

:1

* - * - * -. .. --
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initial Strouhal frequency as described above. Kibens

(1980) showed that if one allowed resonant modes upstream

of the jet exit then when the initial jet eigenfrequency

is near the resonant frequency, the jet would lock onto

this mode and discrete steps in frequency would appear.

A similar type of behavior was observed with wide band

external excitation in Appendix A. Thus, the stepwise

behavior of the initial eigenfrequency must be due to an

external acoustic Zorcing.

To further clarify these views, the variation of the

initial axisymmetric instability frequency with Reynolds
0

number was examined for the test cases described in

Chapter III. Results for test flow condition 1L using a

FO nozzle is shown in Figure 56. Two separate sets of

data were taken. One set corresponds to data taken

off-axis with the hot-wire probe described in Chapter II,

while the other set corresponds to data taken from one of

the pressure taps around the circumference of the jet.

As described in Chapter V, multiple peaks in the

streamwise velocity spectrum were observed. Based on the

phase measurements around the jet and the off-axis

development, the mode which developed a distinct

subharmonic frequency was determined to be the initial

axisymmetric instability mode. It was carefully checked

that the frequency of this mode did not vary in either

U the downstream or cross-stream direction. To ensure that

the probe did not influence the measurements of this

U : :. .. .[ _ : , i. ... .... , , . .. .. .-[ : ;. .... . . ..... ... ' . ...... . .. ...
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mode, the amplitude spectrum of the. pressure

fluctuations, using one of the pressure taps, was taken

with the probe removed from the flow. Details of the

form of the pressure spectrum will be discussed later.

However, a distinct peak corresponding to this frequency

as determined from the velocity spectra was observed.

When this data were plotted in non-dimensional form, it

was noted that the variation of the initial Strouhal

frequency is linear with the square root of the jet

Reynolds number according to Equation (VI-2). This

variation is substantially different from that observed

in Appendix A where the jet was developing in an

acoustically noisy environment.

In Chapter III the value of the initial momentum

thickness of the jet was determined along with its near

. field development. The i',itial momentum thickness (i.e.,

the exit boundary layer momentum thickness) is not a

suitable parameter to scale the initial jet instability

frequency. This is so because this parameter can not

take into account the spectral characteristics of the

exit boundary layer. For example, in Table 2 the initial

exit momentum thickness decreased from case 1L to 3L.

However, the jet required a longer spatial distance for

the initial jet instability to develop (Chapter V). This

is opposite of what one would expect if the initial

momentum thickness was utilized as a scaling parameter.

77. The proper parameter then is one which describes a

~1

A -.. ... _ -
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particular feature of the initially growing eigenmode.

For this reason, the momentum thickness at the position

where a peak in the streamwise velocity spectrum at the

initial axisymmetric instability frequency was first

detectable was utilized to normalize all cases. In this
manner the same relative starting point in the growth of

this instability mode can be maintained between test flow

conditions. Normalizing the data of Figure 56 with this

parameter, it is observed that the initial axisymmetric

mode scales as

Ste = 0.013

It should be noted here that for this initially low

disturbance level condition,e=e0.1 since the first peak

is observed very near the jet exit. This value of Ste

agrees with the results of Zaman and Hussain (1981). In

this case they found that the natural instability occurs

at Ste = 0.012. Here, they normalized by the initial

momentum thickness of the jet. Surprisingly, this value

does not correspond to the maximum amplified mode

according to linear theory, Ste = 0.017, which has been

documented by the above authors under external forcing.

Thus, the initial axisymmetric mode is not the most

amplified. Similar observations were made by Pfizenmaier

(1971) and by Michalke (1972). Since no azimuthal phase

information has been presented in the above work, it is

presumed that the modes which are described are indeed

axisymmetric.
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A mechanism to clarify this mode selection

has been proposed by Zaman and Hussain (1981). In this

case they suggest that the shear layer naturally responds

to disturbances which have maximum growth rather than

maximum growth rate. Here the maximum growth rate was

experimentally determined to occur at Ste = 0.017. These

views however, are based solely on the dominance of an

axisymmetric mode. Much of the recent literature has

been biased toward axisymmetric modes because of the

attractiveness of the pairing process to describe the jet

growth. Helical modes have been ignored. A discussion

on the influence of the helical modes on this selection

mechanism is deferred, however, until all of the relevant

data has been presented.

The experiments carried out by Gutmark and Ho (1980)

utilized a matched cubic nozzle. In a private

communication with Ho (1981) it was suggested that

perhaps it was some characteristic associated with

matched cubic design which led to the stepwise behavior

of f. . To clarify this, measurements were conducted1,0
utilizing both a 5.14 cm MC nozzle and also a 2.54 cm MC

nozzle. These cases are shown in Figures 57 and 58. In

both cases, the initial axisymmetric Strouhal frequency

is lineary related to the 0.5 power of the jet Reynolds

number and in neither case is any stepwise behavior

observed. Unfortunately, the initial momentum thickness

of this shear layer was- not measured so that it is

--
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uncertain if the initial jet still scales at Ste = 0.013.

It is believed however, that the nozzle shape will not

influence this value. Since the nozzle design of Zaman

and Hussain (1981) is radically different from the fifth

order design used here and no difference in the scaling

of the Strouhal frequency was observed, it is plausible

to believe that matched cubic also scales in the same

manner.

As the disturbance level in the core of the jet,- and

hence in the boundary layer, is increased, it is

important to determine the effect on the scaling of the

initial jet instability. The core disturbance level can

be characterized by its fluctuation intensity and also

its spectral characteristics. The core disturbance

becomes internalized in the boundary layer. If the

disturbance level in the boundary layer is low then one

would expect that the disturbance would have no influence

on the selection of the initial instability frequency

since a linear instability mechanism is acting. To

examine this, the variation of the initial axisymmetric

instability frequency was documented for test flow

conditions 2L and 3L. The disturbance characteristics

for these cases were described in Chapter III. Results

of this study are shown in Figures 59 and 60. In each

case the variation of St with the square root of Re is

linear. In addition, when normalized by the measured

momentum thickness using the same criterion as in case
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iL, the. scaling of the initial Strouhal ninmber is

unchanged from that case. Even though the initial

boundary layer disturbance characteristics and the

downstream evolution of the jet are vastly different for

test flow conditions lL, 2L and 3L as observed in Figure

12, and Chapter V, the selection of the initial

axisymmetric instability mode remains the same when

properly scaled. Referring back to Table !I in Chapter

III, if the initial momentum thickness was used to scale

cases 2L and 3L, there would have been no similarity in

the normalized eigenfrequency.

Scaling of Other Instability Modes.

In the previous section the initial axisymmetric

instability frequency was determined in some instances

using the near field pressure, measured at the nozzle

exit. A typical pressure spectrum is shown in Figure 61

for cases lL, 2L and 3L at a Reynolds number of 42,000.

Also included is a spectrum of the background noise in

the laboratory measured 0.3 m behind the nozzle at the
same value of exit velocity. The background noise

exhibits a uniformly decreasing behavior and contains no

discrete spectral peaks for. the jet to possibly lock

onto. The background pressure spectrum was measured over

the entire operating range of exit velocities, flow

configuration and nozzle geometries to ensure that no

external peaks were present. Coherence measurements

. .2 7. * .
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between this pressure signal and the velocity signal in

the initial jet near the nozzle lip indicated that the

two signals were uncorrelated at all frequencies.

The pressure spectrum corresponding to test flow

condition 1L is first considered. A number of distinct

spectral peaks are clearly evident and indicated in the

figure. The initial axisymmetric and helical modes are

both observed with the axisymmetric mode being about 8 db

larger than the helical mode. These two frequencies

correspond to the smallest amplitude spectral peaks

observed. A large amplitude subharmonic peak,

approximately 20 db greater than the axisymmetric mode,

is also observed. The magnitude of this mode indicates

the strength of its upstream radiation field. Two other

spectral peaks, both of nearly equal magnitude as the

subharmonic mode, are identified as the difference mode

generated by the non-linear interaction between the

initial axisymmetric and helical modes and also a mode

which is the difference mode generated by the non-linear

interaction between the above mentioned difference mode

and the subharmonic mode. The sum mode for the above

interaction is also observed lending further support for

the idea of this second non-linear interaction.

The pressure spectrum for case 2L shows the same

spectral trends as for case 1L with the exception of a

broadband decrease in the magnitude of the pressure

field. As the disturbance level is increased further to



90

case 3L, clear spectral peaks for the low frequency modes

are not apparent with the exception perhaps of the

subharmonic mode. It should be noted here that the shift

in frequency from case 1L to 3L is due to a small

increase in the scaling momentum thickness even though

the initial thickness decreases slightly. This

frequency, however, when normalized by the proper

momentum thickness does not change between cases as

observed in Figures 56 through 60 for the initial

axisymmetric mode.

A few basic conclusions can already be made. First,

the effect of the internal disturbance level of the jet

and in particular the exit boundary layer has a distinct

effect on the near field pressure outside the boundary

layer separation point. For low disturbance levels,

peaks exist in the pressure spectrum corresponding to the

initial instability modes, the subharmonic mode, and

modes which are generated through non-linear

interactions. As the disturbance level increases, there

is a broadband decrease in this pressure field. In

addition to this, the peaks corresponding to the

subharmonic mode and the lower frequency non-linear modes

are no longer distinct, indicating an increase in the

randomization due to the increased three dimensionality.

This randomization is observed in the flow structure

between cases 1L and 3L in Figure 12. As was previously

noted, the growth rate of, the jet also decreased with
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increasing disturbance level. This was partially

attributed to the weakening of the initial developing

coherent structures as observed in the entrainment

visualization in Figure 38. This weakening due to the

increase of background disturbances is now also observed

in the broadband decrease of the pressure field.

Having identified the peaks in the pressure

spectrum, the nature of the scaling of these modes is

examined next. For each of the test flow conditions,

spectra similar to those in Figure 61 were taken over

small increments of Reynolds number. The frequency of

each peak was normalized by the jet diameter and jet

velocity. The variation of this non-dimensional Strouhal

frequency with Reynolds number is shown in Figures 62

through 65. The results for test flow condition 1L are

shown in Figure 62. It is observed that all of the modes

in the pressure spectrum vary linearly with the square

root of Re. This indicates that all of these modes scale

at constant value of St,. Even though data were not

taken for the initial helical mode for this case, except

for that from Figure 61, the linear behavior of the

non-linear developing modes implies the linear behavior

of this mode also.

To ensure that this behavior was uninfluenced by the

nozzle shape, a similar set of measurements was taken

using a 5.14 cm MC nozzle. These results are summarized

in Figure 63. As in the previous figure, the observed
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modes scale in an identical manner. It would thus appear

that the basic behavior of these modes is independent of

the two nozzle contours examined.

The variation of the Strouhal frequency modes for

cases 2L and 3L is shown in figures 64 and 65

respectfully. The behavior of case 2L is identical to

that of case 1L. The measurements of the initial helical

mode in Case 3L were taken in the shear layer using the

hot-wire probe previously described. Since no distinct

spectral peaks were visible in the pressure spectrum

below the subharmonic mode for this case, none are

presented here even though they are clearly evident in

the off-axis spectra of Figure 47. The behavior of these

modes is identical to the previous cases. This indicates

that even though the downstream development of the jet is

dependent on the initial disturbance level, the scaling

of the evolving instability modes is not. This ensures

the linearity of the problem initially.

The nozzle lip pressure field is next examined for

the case when the exit boundary layer is turbulent,

Using test flow condition IT with the short duct having

L/D = 0.75, a single pressure tap was installed just

outside the separation point at the same radial position

as the taps on the face of the FO nozzle. Typical

pressure spectra at two Reynolds numbers are shown in

Figure 66 for this condition. The pressure spectra in

this case show a distinct difference between those from a
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laminar boundary layer as described in Figure 61. In

this case there is a single broad-band peak of spectral

energy, the magnitude and center frequency of which

increases with Re. Based on the differences between the

two types of spectra, one would expect a drastic

difference in the evolution of the jet in the near

region.

Examples of the structure of the jet when the

boundary layers are fully turbulent were displayed in

Figure 22 for the Reynolds number range from 39,000 to

100,000. The initial jet consists mainly of fine grain

scales which eventually roll up into a well defined

coherent structure.

Noting the center frequency in the pressure spectra

as described above, the Strouhal frequency based on the

nozzle diameter was determined as a function of Re.

These results are shown in Figure 67. Included in this

igur are he 4--.,^ -E- I e l of- du c"-- for case

In each case, the Strouhal frequency appears to be

independent of Re. However, the values for each case are

different. Remembering that the momentum thickness for

each case was essentially independent of Re, as described

in Chapter III, the Strouhal frequencies were

recalculated based on the exit momentum thickness. These

results are shown in Figure 68 and indicate that the

pressure field at the nozzle lip which is associated with

the initial instability of the jet, scales at a constant

o
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value of Strouhal number. This value is found to be

equal to 0.024. A similar observation was also made by

Hussain and Zaman (1981) in a two-dimensional mixing

layer with an initial turbulent boundary layer. It would

thus appear that initially a linear instability mechanism

is also acting on a jet with turbulent boundary layers as

proposed at the beginning of this chapter. A peak in the

velocity spectrum at this frequency was observed in

Figure 53. This is a further indication of the weak

linear instability that develops naturally.

The value of this Strouhal number for the turbulent

boundary layer though is approximately twice that found

when the exit boundary layers were laminar. The exit

boundary layer profiles for cases IL, 2L and 3L remain

Blasius over the range examined while the profiles for

case 1T are fully turbulent. Clearly, the shape of the

exit profile will have a large effect on the

non-dimensionai frequency of the initial eigenfrequency.

The magnitude of this difference has not been numerically

determined yet.

A summary of the results for the scaling of the

modes observed in the pressure spectra and in the

velocity spectra of the initial jet for all cases is

presented in Figure 69. In this plot the instability

frequencies are normalized by the momentum thickness near

the nozzle lip. Each mode develops at a constant value

of Strouhal number, St . The results of Michalke (1971)

i*B
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for the initially most amplified axisymmetric and helical

modes are also indicated. The initial helical mode

nearly matches this frequency. With the degree of

uncertainty in the momentum thickness measurements and in

the proper choice for the momentum thickness, the value

of St of this mode is certainly within the error bounds

for agreeing with the theory of Michalke. It should be

remembered that the theory by Michalke utilized a family

of hyperbolic tangent profiles. With the profiles

examined in Chapter III, the initial off-axis are only

approximately hyperbolic by the time the initial

instability mode is first observed in the velocity

spectrum.

The initial axisymmetric mode occurs at a value 20%

lower than the initial helical mode. Its subharmonic

mode also scales at a constant Strouhal number. Also

observed are the modes which arise through non-linear

interactions. The results for the initial turbulent

boundary layers are also shown. This result can not be

compared to the calculations by Michalke (1971) though

because of the substantial difference in mean velocity

profile.

These results show that independent of the initial

state of the boundary layer, an initial linear

instability is always observed. The scaling of this

frequency depends on the initial time-mean velocity

profile of the jet. When the initial boundary layer is
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laminar, both initially axisymmetric and helical modes

are observed. The frequency of the helical mode observed

is almost identical to that predicted by the linear

theory of Michalke (1971). The initial axisymmetric mode

occurs at a frequency of 20% lower than the helical mode,

a fact which agrees quite well with the results of

Mattingly and Chang (1974). Modes which are generated by

non-linear interactions of these modes are also observed

to occur at a constant value of Ste, The scaling of the

instab l.ity modes for the laminar boundary layer were

independent of the background disturbance level when the

proper scaling was used.

Coupling Between Long and Short Waves

In the previous sections the characteristics of the

initial jet instabilities, which scale with the momentum

thickness near the exit boundary layer, have been

examined. In addition to these instabilities, it is well

known that a long wave instability which scales on the

jet diameter is also observed. The value of this

Strouhal frequency typically has been found to vary

between 0.3 and 0.6 depending which test facility was

used and is essentially independent of Reynolds number.

This instability is identified on the jet centerline

typically 2-5 diameters downstream of the jet exit. The

emergence of this mode was identified in Figures 44, 49,

51 and 54.
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Recent work by Kibens (1980) showed that when the

exit boundary layer was laminar and the initial

axisymmetric Strouhal frequency was an integral power of

2 of the long wave jet frequency, a small amount of

axisymmetric excitation at the initial jet eigenfrequency

hdd a tremendous effect on the organization of the jet in

such a manner that a large fraction of the energy was

associated with the coherent structures. Axisymmetric

vortex pairings were clearly observed and found to be

stationary. This mechanism was observed to be the

coupling between the initial axisymmetric mode and the

long wave jet instability.

The applicability of this to naturally evolving jets

will next be examined. Based on the above results, a

necessary condition for this to occur is that the initial

axisymmetric Strouhal frequency of the jet be an integral

power of two of the long wave jet instability,

n

St. 2 Stf
1,0f

The Reynolds numbers at which this coupling would occur

would then be given by

Re = C ( 2 Stf) 2

In the above equations, n is identified as the number of

vortex pairings. It must be assumed that the vortex

t .
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interactions are all axisymmetric for these relations to

hold.

The jet Strouhal numbers were first determined for

the five test cases along the jet centerline at x/D = 5.

At this downstream location, the peak in the velocity

spectrum was well defined for all cases. The results

from this study are shown in Figure 70. In each case, St

is found to be independent of Reynolds number. The value

of St , however, is a function of the test flow

condition, varying from 0.42 to 0.485. For test flow

conditions 1L and 2L, St has a constant value of 0.42

and only marginally increases to 0.43 for test flow

condition 3L. When the fully turbulent boundary layer

using the short duct was tested, St had a value of 0.47.

When a thicker turbulent boundary layer was utilized, the

value of St increased to 0.485.

The value of this Strouhal number is a definite

function of the initial momentum thickness of the jet.

For case 1T, using the long duct, the value of D/28 is

1 approximately equal to 40 and independent of Reynolds

number. As this ratio is increased to 50, the value of

St drops to 0.47. The initial laminar boundary layers

all have a value of D/2e larger than 110. For this case

the Strouhal frequency reaches an asymptotic value of

0.42.

With the information provided in Figure 56, the

value of C in Equation (VI-4) was calculated for test
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flow condition IL as:

C = 3720

Knowing this value and the value of St from Figure 70,

the Reynolds numbers at which this coupling might take

place were calculated from Equation (VI-4).

The results are

*
Re = 2600 n=l

10,500 n=2
42,000 n=3 (VI-5)

168,000 n=4

This result indicates that this coupling occurs

predominately at low and moderate Reynolds numbers. As

Re increases this coupling becomes less frequent.

Operation of the present 5.14 cm jet was limited to

Reynolds numbers larger than 30,000. Below this value

the pressure field at the nozzle lip was not much larger

than the background level and the jet could have been

susceptable to external disturbances. The facility could

not be continuously run at an exit Reynolds number of

168,000. Therefore, if any indication of the coupling

mechanism is present in the naturally evolving jet, it

would be observed at Re = 42,000.

If this coupling is to occur, then the jet would

become more organized in an axisymmetric sense. This

increase in organization would lead to an increase in the

observed coherent energy. Some of this energy would be

visible in the subharmonic mode but would probably

Li
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unalter the growth of the initial linear axisymmetric

instability. This increase in the subharmonic energy

would then be associated with a stronger pressure field

for this mode, which would then be felt at the nozzle

lip. To examine this, pressure spectra at the nozzle lip

were taken at various Reynolds numbers using the

alternate pressure measuring system which bypassed the

pressure taps for higher accuracy. For each Reynolds

number the amplitude of the subharmonic pressure peak was

normalized by the magnitude of the peak of the initial

axisymmetric mode, f . These results are displayed in
i,0

Figure 71 fot test cases 1L, 2L and 3L.

For case 1L there is a sharp maxima in the curve

which occurs at the exact Reynolds number predicted by

Equation (VI-5). A closer examination of the pressure

spectra indicated that the magnitude of the peak at f

continuously increased with Re. The peak at the coupling

position thus corresponded to an increase in the pressure

field at f. /2. This coupling is weak though since the
i,0

increase in the ratio of the pressure amplitudes is only

about two. Another indication of the weak coupling is

the observance of only one subharmonic mode in the

pressure spectrum. This coupling mechanism was based on

the idea of continual vortex pairing until the downstream

jet Strouhal frequency was reached. This continual

pairing would then lead to the development of modes 1/2fi

and 1/4f The second pairinq mode is clearly not
tj/fi 0

-. .....-- - ,. X l Z l
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observed. A third indication of the relatively weak

coupling is the lack of effect this coupling has on the

growth rate for the jet presented in Figure 39 for this

Reynolds number.

Once the background disturbance level is increased

as in cases 2L and 3L, this natural coupling disappears,

i.e., the jet is no longer capable of self-excitation.

In these cases, the emergence of an initial helical mode

was clearly noted. With the competition between this

mode and the initial axisymmetric mode, it is not

surprising that an axisymmetric coupling is not observed.
0AIf initial axisymmetric perturbations of sufficient

intensity were added at the proper frequency so that the

axisymmetric mode completely dominated the initial

helical mode development, then this coupling between long

and short waves would be observed at the indicated

coupling position. These results suggest that continual

pairing is not the coupling mechanism between long and

short waves as Kibens (1980) found. By externally

exciting the jet in the manner of Kibens, it is possible
0

to overide the effect of the helical disturbances. The

continual pairing then is a result of the externally

imposed axisymmetric forcing and not a result of the

coupling mechanism.

To observe the effect of the helical mode on the

natural coupling, consider the variation of the following

ratio: the magnitude of the peak corresponding to the

C)
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mode developing from-the nonlinear interaction between

the subharmonic mode and the mode which developed through

a nonlinear interaction between the initial axisymmetric

and helical modes normalized by the magnitude of the peak

of the subharmonic mode in the pressure spectrum. This

amplitude ratio is an indication of the relative

importance of the helical to axisymmetric modes. This

complex form using radiation from the interaction modes

rather than the original modes has been selected since

the former ones have lower frequencies and are more

efficient radiators at a fixed distance from the jet.

This ratio behaves in the manner shown in Figure 72 as a

function of Reynolds number. The results for case 1L are

considered first. At the coupling position this ratio

has a minimum value. This minimum corresponds to the

increased axisymmetric field described above. As the

Reynolds number increases, the relative importance of the

helical mode grows as observed by the trend of the data

toward values of this ratio larger than one. In case 2L,

no natural coupling was observed. This is further shown

here by the importance of the helical mode as indicated

by this ratio being larger than one. The level of the

data for case 2L is equal to that at the higher Reynolds

numbers for case 1L. This further shows that as the

disturbance level increases, the helical mode is quite

distinct and the flowfield can no longer be thought of as

being fully axisymmetric.
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To ensure that this coupling behavior was not

influenced by the shape of the nozzle, a similar study

performed using a 5.14 MC nozzle. These results are

displayed in Figures 73 and 74. The coupling Reynolds

number for this case is essentially the same value as for

the FO nozzle since the exit boundary layers are nearly

identicle. The coupling phenomenon is once again

displayed in Figure 73 for test case 1L. The only

difference in the behavior of the two nozzles is the

larger value of p'(O.5fi,0 )/p'(fi,0 ) for the matched

cubic nozzle. Upon .examination of the values of the

peaks in the spectra, it was determined that the increase

in this value was due to a decrease in the value of

P'(f .

The variation of the rms pressure of the subharmonic

nonlinear interactive mode is shown in Figure 74. In

this case the behavior of both nozzles is nearly

identical and once again demonstrates the natural

coupling position and the emergence of the helical mode

as the disturbance level in the boundary layer is

increased as a result of increasing the jet Reynolds

number. These results are consistent with those of the

previous figures. It thus appears that the only

difference between the two nozzles is the magnitude of

the pressure field at the nozzle lip due to the initial

development of the axisymmetric instability mode.

(j
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CHAPTER VII

INSTABILITY EVOLUTION OF INITIAL JET

In Chapter V general observations were made about

the instability modes found in the jet and their

relationship to the pressure field near the nozzle lip.

In Chapter VI the details of this pressure field were

closely examined. In that chapter it was noted that

large peaks existed in the nozzle lip pressure spectra

which correspondea to the instability modes observed in

the jet. In fact, a high coherence was measured between

this near field pressure and the downstream velocity

fluctuations which indicated a strong relationship

between the downstream evolution of the jet and its

initial development through an unsteady irrotational

pressure field at the nozzle lip. This relationship and

the actual development of the instability modes in the

initial jet are examined in detail in this chapter. Both

amplitude and phase measurements were made to examine the

different characteristics of the evolutionary process.

In order to relate this instability process to the

pressure field at the nozzle lip, detailed two point

coherence measurements were also made.

For all cases examined in this chapter, a single

hot-wire was traversed along the jet at a constant
C

azimuthal angle of y = 0 ;see Figure 2. The pressure tap

in the nozzle face at this same azimuthal position was
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simultaneously monitoring the pressure field. Using this

signal as a reference, the coherence and phase spectra

were computed with the signal from the hot-wire as

described in Chapter II. Single channel velocity spectra

were also computed to obtain the RMS amplitude of each

instability mode.

Amplitude Development

The growth of the instability modes are first

considered for the low disturbance level condition of

case 1L. The behavior at the natural coupling condition,

corresponding to Re = 42,000 as described in Chapter VI,

is shown in Figures 75-78 for two different radial

positions in the jet. The first position which is

considered is at a radial location where the local mean

velocity is 60% of the jet velocity. This position, as

noted in Chapter IV, corresponds to the ray along which

the maximum turbulence intensity is found. The behavior

of the initial axisymmetric instability and its

subharmonic is described in Figure 75. The first

measuring position near the nozzle lip for which a large

enough signal-to-noise ratio existed in the hot-wire

output, so that non-random spectral content was

measurable for the initial axisymmetric mode, was x/D =

0.03. This corresponded to a value of x/ei of

approximately 8. At this position, the amplitude of the
m

subharmonic mode is an order of magnitude larger than the
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corresponding value for the initial axisymmetric mode..

This is a result which has not been previously reported

in the literature. In fact, the subharmonic mode was

never observed until the amplitude of the fundamental

mode reached a finite level. This initially large

subharmonic amplitude is a result of the self-excitation

of the jet, i.e., from the natural forcing by the

downstream evolving subharmonic mode through an upstream

pressure field which is felt at the nozzle lip, or

separating point.

Both modes initially grow exponentially with the

growth rate of the initial axisymmetric mode being larger

as one would expect from linear theory. Because of the

difference in growth rates, both modes attain the same

relative amplitude by x/D = 0.2. The initial

axisymmetric mode subsequently reaches a finite

amplituder at which point the growth of the mode deviates

from exponential growth. At that location, the growth

rate of the subharmonic suddenly increases by 46%. The

4! subharmonic mode then appears to once again grow

exponentially, overtaking the initial instability mode in

amplitude and reaching a peak value of 5%. Just before

this maximum is reached the amplitude of the initial

axisymmetric mode decreases to a local minimum before

increasing to approximately the same value as that for

the subharmonic mode by x/D = 0.8. From the flow

visualization taken at this Reynolds number, it is noted

*1
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the peak in the subharmonic amplitide corresponds to the

average pairing position, an observation first made by Ho

and Huang (1981), in a two dimensional shear layer.

We now return to the nature of the initially large

amplitude of the subharmonic mode with respect to its

fundamental. Freymuth (1966) showed that when the

separated layer of an axisymmetric jet was excited by a

low level external sound source, the growth of this

instability mode in the initial jet was linearly related

to the pressure field at the nozzle lip by

Ul

- B(St) z exp(-aix) (VII-l)

where the function B actually describes the receptivity

of the separated layer to the imposed pressure field

(Morkovin and Paranjape, 1971). It is hypothesized here

that the naturally existing near field pressure acts in

the same manner.

The initial growth rates for these two modes were

determined to be
-a i6(f i'o)  0.092

1afi ) = 0.040
i 2 i,o

These two values are nearly identical to those predicted

by Monkewitz and Hueere (1981) for a Blasius profile at

these frequencies. This result indicates that the

initial subharmonic development is due to a linear

instability. It is observed that initially
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u' (1/2fi ) P' (1/2fi  
)

u (fio p' (fio

Here the ratio of the pressures was determined from

Figure 71. This agrees with the external forcing case of

Freymuth (1966) assuming that B( fi,0 )/B(fi,0 ) is nearly

unity, an assumption which is consistent with his

results.

These results indicate that for this ultra low

disturbance condition, the initial separating layer is

receptive to the naturally existing pressure field of the

subharmonic mode. Both modes initially develop

independently since a linear mechanism is acting. From

only the amplitude development though it is not possible

to determine the phase relationship between the two

waves. This linearity persists until the initial

axisymmetric mode reaches a finite amplitude. At this

point, denoted xr/D, it was observed that the subharmonic

mode growth rate changed. Referring back to Figure 20,

it is observed that at this position the mean velocity

profile begins to change substantially. In fact it is

not until both modes have attained nearly equal

amplitudes by x/D = 0.8 does the shape of the profile

return to a nearly hyperbolic tangent profile. Clearly,

this secondary growth region of the subharmonic mode is

associated with a different type of instability mechanism

than in the initial region. This secondary region is due

to a subharmonic resonance mechanism as presented by
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Kelly (1967), as will be detailed later. However this

work cannot completely describe the phenomena since x /Dr
flow visualization indicates that the initial jet has

already rolled up into a finite vortex element. The

effect of this finite size must also be included. Some

information on this effect can be obtained from the work

by Pierrehumbert and Widnall (1981). This secondary

instability is the driving force which leads to the

pairing process.

If the natural pressure field is acting as a small

excitation to the jet, then based on the nature of the

pressure spectrum in Figure 61 one would expect to

observe all of the nonlinearly developing modes growing

exponentially near the nozzle lip and all having

initially larger amplitudes than the initial axisymmetric

mode. The relative amplitude of each mode would then be

determined by the ratio of the magnitude of the pressure

peaks in Figure 61. The near field development of these

modes is shown in Figure 76. The initial behavior is

exactly as expected. The ratio of the initial amplitudes

of any two modes is simply determined by the ratio of the

associated peak values in Figure 61. This is clearly a

self-excited naturally developing jet. Once again, the

initial growth rates of each of these modes are well

predicted by the theory of Monkewitz and Hueere (1981).

Examining Figures 75 and 76 closer, it is observed

that the initial exponential growth of each mode ceases

C,
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at the resonant position. This change in instability

behavior is also observed in the growth of the momentum

thickness of the jet in Figure 77. Up to the resonant

position, it was previously pointed out that the initial

momentum thickness changed by 40%. Strong entrainment

into the jet only is observed after the resonant

position. In fact the growth of the jet is linear after

this point except for an additional 25% increase in the

growth rate at the average pairing location. These

results are an indication that simple linear theories

cannot predict this secondary instability even using

quasi-parallel or slowly diverging flow assumptions.

The behavior of these instability modes for this

Reynolds number along U/Uj = 0.9 is shown in Figures 78

and 79. These figures should show a consistent behavior

with the previous two figures. The subharmonic mode is

initially higher in amplitude, exhibits exponential

growth to x/D = 0.3 where the growth rate increases by

40% and a new region of exponential growth is observed.

In this case, once the amplitude of the subharmonic

reaches a value of 2%, a plateau is formed where the

amplitude remains constant with axial distance. Even

though the magnitude of the initial fundamental mode is

lower in the inner region of the jet than in Figure 76,

the subharmonic growth rate changes when the amplitude of

the subharmonic is 50% that of the fundamental. This was

also observed in Figure 76. The behavior of the

L -



nonlinearly developed modes is shown in Figure 79. Once

again the initial exponential growth of these modes is

observed up to the resonant position. After this

position all of the modes with the exception of the

fundamental grow to an equilibrated value of 2% past

x/D = 0.6.

The previous figures referred to the Reynolds number

case where a natural coupling between long wave and short

wave instabilities was observed. It is important to

determine if the initial behavior of the jet is due to

this special operating condition or if it is independent

of Reynolds number. Examination of Figure 69 revealed

that all of the observed modes scaled at a constant

Strouhal number, based on a properly chosen momentum

thickness, and was independent of Reynolds number. One
may therefore expect the characteristics of the initial

jet to also be Reynolds number invariant with respect to

the nature of the development, although the initial

amplitude levels of the pressure peaks were found to be

Co dependent on Re. This is examined in Figures 80 though

86, where the evolution of these modes have been

documented over the Reynolds number range from 34,000 to

80,000.

For each of the cases shown, the relative amplitude

of the subharmonic mode with respect to its fundamental

is given by the results in Figure 71. Since the nature

of this phenomenon is independent of Reynolds number, it

(3
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must be naturally occurring. If it is,naturally

occurring, why hasn't this phenomenon been reported in

the literature? This question will be answered shortly.

From these figures, the basic behavior of both the

initial axisymmetric mode and its subharmonic mode

emerge. A strong pressure field associated with the

subharmonic mode is radiated back to the nozzle lip.

This pressure field forces the initial jet and this mode

subsequently grows exponentiatly. The initial amplitude

of the subharmonic is a linear functional of this

pressure field. At the same time, the initial

axisymmetric eigenmode of the jet develops and amplifies

from its original background level amplitude. When this

instability reaches a finite amplitude of approximately

0(1%), the growth rate of the subharmonic changes,

increasing by approximately 40%, and a new exponential

growth region is observed. This change in growth rate is

the emergence of a secondary instability, not associated

with a hyperbolic tangent profile, and is also linear.

The behavior of these modes after this axial position is

much more dependent on the radial position. Along U/Uj =

0.6, which is at the peak intensity in the jet shear

layer, a clear pattern emerges. The exponential growth

of the secondary instability of the subharmonic mode

continues until the initial jet instability reaches a

maximum value. This saturation of the initial mode is

associated with the deviation of the exponential growth
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of the subharmonic mode. The subharmonic continues

growing to a maximum value at the expense of the energy

in the initial axisymmetric mode until this mode decays

to a minimum value. It is at this position that initial

structures are in the process of merging, as observed by

the earlier visualization. The subharmonic then decays

after the completion of pairing and the initial

instability mode gains energy to its final equilibrated

position.

Along the radial position U/Uj 0.9, such a

discrete behavior is not observed. The exponential

growth of the initial mode along with the exponential

growth of the subharmonic mode and its secondary

instability are all observed. However, the discrete

difference between these modes at the pairing position is

not observed. Both modes appear to grow to a maximum

value and then slowly decay. The subharmonic mode still

appears to deviate from exponential growth at the maximum

amplitude of the initial axisymmetric instability. In

all cases, the subharmonic mode reaches a higher

amplitude than its fundamental.

Much of the recent work on instability in two

0 dimensional shear layers considers the evolution of the

total energy of a given mode integrated across the shear

layer and not the local RMS fluctuations. This

integrated quantity is a spatially averaged variable

which will indicate the gross features of the
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instability. It cannot, however, detect some of the more

important details of the instability evolution. For

example, the sharp dip in amplitude of the initial

axisymmetric mode at the pairing position would be

averaged out. This is not to say that the use of the

total energy is without merit but rather that it cannot

isolate the fine points of the instability process. A

The variation of the nonlinearly developed modes

also has a consistent Reynolds number behavior. These

modes must initially develop past the resonant position.

The pressure field associated with these developing modes

radiates back to the nozzle lip. This in turn linearly

forces the jet and these modes subsequently grow

exponentially prior to the resonant position. The

amplitude development of these modes changes at the

resonant position and the modes continue to grow until

all reach equilibrated values.

When the core disturbance is low enough, it was

noted that the characteristics of the instability

evolution are independent of Reynolds number. The effect

of background disturbance levels on these instability

characteristics is examined next. The evolution of the

initial axisymmetric mode and its subharmonic for test

flow condition 2L at Re = 42,000 along U/Uj = 0.6 is

shown in Figure 87. For this case, the initial

- subharmonic amplitude is approximately a factor of 5

larger than the amplitude of the initial axisymmetric

%,I
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eigenmode. This ratio is once again predicted in Figure

71. In this case, as well as with case IL, there is an

initial exponential growth followed by a secondary

instability of the subhartionic mode. For case 2L, the

*P subharmonic growth rate also changes slope when

u' (fi,) = 2u' (if. The fundamental reaches a peak

amplitude in both cases and at this position the growth

of the subharmonic mode is no longer exponential. In

case 2L, the magnitude of the initial instability mode

then decreases but a sharp drop is not observed as in

case 1L. The subharmonic amplitude reaches a peak value

equal to that of the fundamental. This peak has a much

broader axial extent than that of case IL. This is

associated with the randomization of the pairing position

as observed in visualization.

When the background disturbance level is increased by

usage of test flow condition 3L, a different behavior of

the initial instability process is observed in Figure 88.

There is no initial growth of the subharmonic mode. From

CFigure 61, a spectral peak at the subharmonic frequency

is evident. However, the background disturbance level in

the initial separating boundary layer is large enough so

that the shear layer is not receptive to the level of

forcing provided by the nozzle lip pressure field. Not

until the fundamental has grown to a finite level, where

it begins to deviate from exponential growth, does the

subharmonic emerge. The behavior past this point is

1(O
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nearly identical to case 2L. In fact, it is this

behavior which has been documented in the literature both

in axisymmetric jets and also in two dimensional shear

layers. This is a result which is extremely important.

The basic nature of the initial evolution of the

instability modes is highly dependent on the background

disturbance level both in the jet core and also in the

nozzle exit boundary layer. Above a certain disturbance

level, the initial separated layer is not receptive to

the external pressure field at the nozzle lip. It seems

as though many of the experimental facilities which have

been used in the literature are of this high disturbance

level condition. Once the disturbance level is reduced,

as in the present experiment, more details of the

instability process are revealed. Also included in

Figure 88 is the initial amplitude development of the

helical mode. For this flow condition the amplification

is nearly identical to that observed for the initial

axisymmetric mode as was previously discussed in

Chapter V.

Phase Development

Any description of an instability process by its

amplitude development alone is incomplete unless its

phase variation is also considered. The phase

development for each of the modes and case presented in

Figures 75 through 88 was determined. The pressure field

. . .- * - .S . . - .~ .S . . .



at the nozzle lip was used as a phase reference so that

the downstream phase variation of the instability mode

could be determined. No attempt was made to correct the

absolute value of the reference phase due to the transfer

function of the pressure tap measuring system. The

initial value of the phase difference between the

velocity fluctuations and the nozzle lip pressure field

is not important here. It is only the phase differences

with respect to this initial value that are relevant. As

in the previous set of figures, the low disturbance level

condition, case iL, is first examined at a Reynolds

number of 42,000. The phase development for the initial

axisymmetric instability and subharmonic modes is shown

* in Figure 89.

From this figure, the phase difference varies

linearly with axial distance for the initial axisymmetric

mode. The dashed line passing through the data

represents a constant phase speed of 0.5 indicating the

non-dispersive nature of this mode. This phase speed is

determined using the method presented by Knisely and

Rockwell (1980). The normalized phase speed, Cr, is

defined by

C fXCr = __

r U.3

or

_ St
r [d up/d (x/D)]
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An initially different behavior is observed for the

subharmonic mode. In this case there is an initial

region near the nozzle lip where u is independent of

axial position. This region extends up to an axial

position of x /D. By the resonant position the
L

subharmonic is traveling at the same phase speed as its

fundamental. This is a necessary condition for the

definition of a resonant mechanism and also allows for

efficient energy transfer from the fundamental wave to

the subharmonic.

From the initial amplitude development of the

subharmonic mode, it was determined that this was a

linear instability. If this was a simple linear

instability, the phase speed of this'mode should have a

value of 0.81 as predicted by Monkewitz and Hueere

(1981). Upon examination of the phase variation, this is

not observed. Instead, a constant phase is initially

observed and then the wave becomes non-dispersive. This

clearly, is not indicative of a simple linear mechanism.

This behavior can be due to one or two effects. First,

there may be a region near the nozzle lip where the

pressure field interacts with the trailing edge of the

nozzle. If this is the mechanism, then this region of

lip influence should scale with the Strouhal frequency of

-i the instability mode. If the data does not scale in this

manner, then this constant phase may be due to probe

m interference.
I.

I.
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The downstream phase variation of the nonlinearly

developed modes for the same conditions is shown in

Figure 90. Again, each mode is characterized by a region

near the nozzle lip where the phase is constant. Upon

examination of these two figures, one finds that this

position, xJD, is frequency dependent, moving downstream

at lower frequencies. This lends support to the first

speculation above. The scaling of this will be further

examined once all of the phase data have been presented.

It is interesting to note that the difference mode has a

phase speed of 0.6 past the nozzle lip influence region.

What is surprising is that for this low frequency mode,

the nozzle lip influence region extends beyond the

resonant position. Clearly, there is an interaction

between the radiated pressure field and the nozzle lip.

The phase variation for case 1L over the Reynolds

number range from 34,000 to 60,000 is shown in Figures 91

through 95. In each case, the fundamental mode has a

phase speed of approximately 0.5. The subharmonic mode

along with the other modes have an initial region where

the phase is constant before becoming a traveling wave.

The subharmonic mode in all cases becomes non-dispersive

near or at the resonant position.

Once the Reynolds number is increased to 80,000, an

interesting phenomenon occurs. The character of the

phase variation of the subharmonic mode changes. This is

shown in Figures 96 and 97. Initially there is a small

0
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region near the nozzle lip where the phase is constant,

x<xL . Past it, the subharmonic has a phase speed of

0.81. This is the phase speed that Monkewitz and Hueere

(1981) predicted. At an x/D value of 0.16, the phase

speed suddenly changes to a non-dispersive wave speed of

0.5. In this case, this change occurs exactly at the

position where the amplitude growth rate changes slope.

The change between primary to secondary instabilities for

the subharmonic modes takes place over a very small

distance.

From these phase measurements, the variation of the

initial axisymmetric wavelength was determined. The

downstream phase variation was first fit to a linear

function. From this, the wavelength was determined from

the calculated slope. These results are shown in Figure

98. This figure shows that the initial axisymmetric wave

length varies inversely proportional to the square root

of Reynolds number as predicted by linear theory. These

* results give an indication of the accuracy of this method

for determining the downstream phase variation.

From the previous figures showing the downstream

phase development, every mode was observed to have a

finite region near the nozzle where the phase difference

was constant. When this region is plotted versus the

Strouhal frequency of the instability mode based on the

jet diameter, for all cases between Reynolds numbers

34,000 and 80,000, the behavior in Figure 99 is obtained.

-I
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The data taken over this wide range of conditions

collapse to a single curve. This nozzle lip region is

found to be an exponentially decreasing function of the

mode Strouhal frequency. These results are somewhat

consistent with the results discussed by Crighton (1981)

in his review paper showing that there is a region near

the nozzle lip which is affected by the requirements of

the Kutta condition. They also show that this region

decreases with increasing frequency.

Having examined the characteristics of case lL, the

effect of changing the flow condition on the downstream

phase variation is observed in Figures 100 and 101. The

phase variation in Figure 100, which corresponds to test

flow condition 2L, shows only minimal differences from

that exhibited in Figure 89 for case 1L. The subharmonic

behavior is quite similar. There is an initial region

V where the phase is constant. Between this region and the

position of the subharmonic resonance, the phase velocity

appears to be different than 0.5 and closer to the value

OP of 0.81 previously observed in the case 1L at Re = 80,000

data. The accuracy of the phase variation within this

region is not sufficient to determine an accurate phase

speed. At the resonant position, however, there is

little doubt that the wave has a phase speed of 0.5,

matching that of the fundamental.

The phase variation for case 3L is shown in Figure

101. Both the initial axisymmetric and helical modes
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have nearly identical phase speeds of 0.5. As was,

previously discussed, no peaks were observed in the

velocity spectrum for the subharmonic mode until the

fundamental reached a finite amplitude. This is further

reflected in this figure by a lack of non-random phase

information in the subharmonic mode until a streamwise

distance where the initial axisymmetric mode reaches a

finite amplitude. After this point the subharmonic wave

travels at a phase speed nearly equal to that of its

fundamental.

Relationship to Near-Field Pressure

The characteristics of the initial instability

evolution have just been examined. The relationship

between these characteristics and the near-field pressure

is now investigated through the coherence function, r

between the velocity fluctuations in the initial jet and

the pressure field outside the nozzle lip at the same

relative azimuthal angle. The axial variation of the

coherence for case IL at Re = 42,000 is first examined in

Figures 102 through 105 for a radial positions of U/Uj =

0.9.

The variation of the initial axisymmetric

instability mode is considered first in Figure 102. For

both positions in the jet, the coherence initially has a

value of approximately 0.4. This initial value remains

nearly constant until an axial distance of about 0.6,
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where pairing was observed in the flow visualization, and

then gradually decays. This behavior is quite different

from that observed for the subharmonic mode which is

shown in Figure 103. Similar trends are observed at both

radial positions. Initially, a high coherence of 0.6 is

measured up to an axial position of 0.2D. The region of

this constant coherence corresponds to the region of

nozzle lip influence. Once this region is past, the

coherence drops and reaches a minimum value of 0.3. This

minimum value occurs at the resonant position.

Associated with the growth of the subharmonic secondary

instability is an increase in the level of coherence.

The coherence increases and reaches a maximum value at

the axial location where the peak subharmonic amplitude

was observed. From this point on, the coherence

gradually decays.

0 This result indicates that the subharmonic pressure

field is generated during the growth and decay of the

subharmonic secondary instability with its strength being

, a function of its velocity amplitude. It is over this

same region that the pairing activity is observed.

However, this pressure field is associated with the

growth and decay of an instability mode and not due to

the pairing as previously believed by Laufer (1981).

This pressure field propogates away from this region with

(:1 the speed of sound and is felt back at the nozzle exit.

The pressure field acts as an external excitation to the



124

jet and a subharmonic mode emerges at the nozzle lip and

grows exponentially. Since the pressure field and the

growing velocity field are related by a linear

functional, the initial coherence is high and remains at

that level throughout the region where the pressure field

interacts with the nozzle. After this point the

coherence drops. This drop in coherence will be

discussed once the azimuthal variations have been

presented in the next chapter. The coherence variation

of the nonlinearly developing modes is described in

Figures 104 and 105. The interactive mode between the

subharmonic and difference mode is first examined in

Figure 104. As in the previous figure, the coherence

initially has a constant value throughout the nozzle lip

influence region. Beyond this region, the coherence

decays. The behavior of the difference mode, shown in

Figure 105, is substantially different from the modes

just described. In this casethe peak coherence along

U/Uj = 0.6 occurs where the amplitude of initial

axisymmetric mode attains a minimum value as shown in

Figure 75. This is also the position where the amplitude

of the difference mode, Figure 76, reaches its maximum

value. Along U/U. = 0.9 the difference mode firstJ

reaches its maximum amplitude farther downstream than

along U/U. = 0.6 as indicated in Figure 78. This

position is consistent with the location of the peak in

the coherence.

-V"
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The Reynolds number behavior was examined next for

Case IL. Results corresponding to Reynolds numbers of

52,000 and 60,000 are presented in Figures 106 through

109. These figures show that the coherence development

associated with all of the observed modes is essentially

independent of Reynolds number when viewed in terms of

the position of the nozzle lip influence region, the,

Jr resonant position and the peak energy in the associated

mode.

The behavior of the coherence for the initial and

subharmonic modes for Re = 80,000 is shown in Figures 110

and 111, respectively. Initially, a very high coherence

exists for the initial instability mode. In fact, as Re

increase the coherence of this mode increases. This is

due to the increased vorticity in the initially separated

layer which leads to a stronger pressure field at the

nozzle lip. Beside the initially higher coherence, the

behavior of this mode is independent of Reynolds number.
The evolution is quite different from the previous

subharmonic evolutions in that the sharp drop in

coherence is not observed at the resonant position. A

small drop in coherence at this point is observed along

U/U. = 0.9 but is not as drastic of an effect as before.

From the phase speed measurements it was noted that after

the nozzle lip influence region the subharmonic wave

behaved both in amplitude and phase speed as a linear

eigenmode. it is unclear if the change in the behavior

- ;~''"
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of the coherence in this region is due to this observed

difference.

Finally, the effect of background disturbance level

on the coherence variation is examined in Figures 112

through 114 at a Reynolds number of 42,000. When Case 2L

is compared to Case IL, the variation of the coherence,

for the initial axisymmetric instability is nearly

identical. The basic shape of the coherence variation

for the subharmonic mode is also identical to that of

Case iL along U/U. = 0.6. The difference lies in theJ

magnitude of the coherence. Case 2L is characterized by

higher background disturbances which reduces the

magnitude of the initial coherence from 0.6 in case 1L to

0.3 in case 2L. This drop in coherence is simply due to

the effect of extraneous background noise at this

frequency as described in Appendix B. The subharmonic

secondary instability occurs at the resonant position and

a high degree of coherence with the pressure field at the

nozzle lip is still observed. The shape of the coherence

variation for the nonlinearly developing modes is

described in Figure 113. The basic nature of this

variation is consistent with the previous results. The

behavior of the initial region however is not as clear

because of the initial background disturbance level.

The results for case 3L are displayed in Figure 114.

Due to the much higher level of background disturbances

there is no coherence between the pressure field and any
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velocity fluctuations in the initial jet shear layer. A

strong coherence in the subharmonic mode appears when the
subharmonic resonance begins. This resonant or secondary

instability is still highly coherent with the near field

pressure. In fact a subharmonic peak in the pressure
spectrum was observed in Figure 61 for this case. The

zero coherence prior to the resonant position is

certainly due to the high background noise for this case.

The question which cannot be answered yet is whether the

shear layer is receptive to this pressure field initially

so that a low amplitude wave would grow spatially and

have a coherent phase relation to the nozzle lip. The

amplitude of this mode would be buried in the background

noise so that a simple velocity spectrum could not reveal

it. If the answer to this question is yes then a closed

feedback loop exists for the entire subharmonic

evolution, including the phase information. If the

answer to the question is no, then in general there is no

feedback loop, and the observed feedback loop for cases

L and 2L is only a result of the ultra low disturbance

levels. This subject is discussed further in Chapter XI.

to
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CHAPTER VIII

AZIMUTHAL DEPENDENCE OF
INITIAL JET INSTABILITIES

In Chapter V, information on the azimuthal phase

variation was required to identify the initial

axisymmetric and helical modes. Once the nature of these

modes was known, all of the observed peaks in the near

field pressure spectrum and also in the velocity spectrum

were identified. The axial development of these modes

was subsequently examined in Chapter VII. A complete

discussion of these modes would be incomplete though

without also describing their azimuthal dependence in

detail.

The measurement techniques were discussed in Chapter

II. At every axial location, the hot-wire was placed at

a radial position such that the local mean velocity was

90% of the core velocity. Phase and coherence

measurements were then made between this signal and the

pressure field at the nozzle. The azimuthal dependence

was obtained by varying the relative angle between the

pressure tap and the velocity sensor. A consistency

check on this data was obtained by repositioning the

velocity sensor at a different azimuthal angle and once

again checking the azimuthal variations in both the phase

and coherence. The measurements presented in this

chapter were found to be dependent on only the relative

separation angle between the velocity sensor and the
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pressure port. The uncertainty in the measured values of

the coherence appeared to be approximately 0.07.

The results for test flow condition 1L are presented

first for a Reynolds number of 42,000. After discussing

these results, the Reynolds number dependence is

examined. Finally, selected cases from flow conditions

2L and 3L are presented and compared to those of flow

condition 1L.

The downstream behavior of Case 1L at a Reynolds

number of 42,000 is shown in Figures 115 through 120.

The azimuthal variation of the coherence and normalized

phase difference for the initial axisymmetric mode is

shown in Figures 115 and 116 respectively. The axial

locations listed are representative of different regions

of i.mplitude behavior as indicated in Figure 75 through

79. At x/D = 0.2 both the subharmonic and fundamental

have nearly equal amplitudes. By x/D = 0.4, the

secondary instability of the subharmonic mode has

developed and the growth of the fundamental mode is non

exponential. The peak intensity in the subharmonic mode

was observed at x/D = 0.6 along with a local minimum in

the initial axisymmetric mode. The pairing process is

-10 fully completed by x/D = 0.8 and near x/D = 1 the flow is

approaching self similarity.

The azimuthal variation of the coherence for the

initial axisymmetric mode is examined in Figure 115.

Within the experimental uncertainty, the coherence is

~;i 1 1i
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initially independent of azimuthal angle. With

increasing axial distance the level of the coherence

drops but still remains nearly constant around the jet.

The phase variation for this case is illustrated in

Figure 116. Within the initial exponential growth region

there is a nearly zero phase shift around the jet. This

indicates the axisymmetry of the initially developing

mode. This axisymmetry is observed to persist even when

the secondary instability of the subharmonic mode is

growing. Near and after the pairing process location,

the axisymmetry of the mode is lost. Over this region

the maximum averaged phase difference is observed to be

near 90 degrees.

The behavior of the subharmonic mode is displayed in

Figures 117 and 118. The coherence, shown in Figure 117,

is initially uniform around the jet in the initial

exponential growth region of this mode. This indicates

that the early spectral development of the subharmonic

mode is independent of azimuthal angle. In the region

where the subharmonic resonance has begun, the coherence

at a relative separation angle of 0 degrees is a minimum,

agreeing with the results of Figure 103. As the

separation angle is increased, the coherence increases to

a maximum value when the pressure port and velocity

sensor are on diametrically opposite sides of the jet.

This result was independent of initial azimuthal angle of

the velocity sensor. The nature of this behavior will be
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examined when all of the subharmonic data has been

presented. At the axial location of the peak intensity

of the subharmonic mode and also farther downstream, the

nature of the coherence distribution changes. Maximum

coherence is observed at a relative separation angle of

zero degrees. The coherence decreases with increasing

separation angle and it has a minimum value at a

separation angle of 180 degrees. This behavior is not

surprising. Over this region there is an increase in the

background disturbance level. Once the separation angle

is increased, the uncorrelated background disturbance

adds more noise to the system and hence the coherence

drops. Minimum coherence is observed at the maximum

separation angle. The phase variation of this mode is

shown in Figure 118. This mode initially develops

axisymnmetrically and continues to remain axisymmetric

even at one diameter downstream. It is clear that the

subharmonic resonance is an axisymmetric mode. What is

surprising is that even after the pairing has occurred

and the mean shear region becomes transitional, the

axisymmetry of the subharmonic mode persists.

The dependence for two of the nonlinearly developing

modes is considered next in Figures 119 and 120. In

these figures, the difference mode arising from

interaction between the initial axisymmetric and helical

modes and with the mode developed through the interaction

between the subharmonic mode and the aforementioned
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difference mode are examined. The coherence for the

difference mode remains independent of separation angle

up to the location of the peak subharmonic intensity.

After this region, the coherence decays with increasing

separation angle for the same reasons as those for the

subharmonic mode. For the subharmonic difference mode

the coherence is constant around the jet in the region

before the peak subharmonic intensity. More information

about these modes is revealed in the phase measurements,

presented in Figure 120.

The difference mode is considered first. At x/D =

0.2, which is in the initial exponential growth region of

this mode, the phase measurements indicate that this mode

is nearly axisymmetric. This is due to the dominance of

the initial axisymmetric mode for this low disturbance

level condition. The downstream variation along with the

variation for the subharmonic difference mode is not as

clear. If a mode is strictly axisymmetric, helical or

some other higher mode, its azimuthal wave number is

clearly defined. When axisymmetric and non axisymmetric

modes interact nonlinearly, the azimuthal wave number may

switch back and forth between modes. If this type of

switch over is occurring, then the averaged phase

measurements are not a clear indication of the azimuthal

development.

The effect of Reynolds number on this development is

shown in Figures 121 through 134. This is first examined
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for the initial axisymmetric mode. The coherence

measurements for this case are shown in Figures 115, 121,

and 129. Below Reynolds numbers of 52,000, the exit

boundary layer was observed to have a nearly constant

maximum fluctuation level of 1%. Over this same range,

the downstream behavior of the azimuthal variation of the

coherence for the initial axisymmetric mode is the same.

When the Reynolds number is increased to 60,000, the peak

intensity in the exit boundary layer is approximately 3%.

This increase in the background disturbance level is

reflected in the coherence variation in Figure 129. The

reader is referred to Appendix B for additional

discussion on the coherence function. Similar

observations are made with respect to the phase

measurements in Figures 116, 122 ano 130. Below Re =

52,000 the initial axisymmetry of the mode is reflected

by the measurements. At Re = 60,000 this is not readily

apparent. However, over the region of high deviation

from axisymmetry, the value of the coherence drops to

near zero levels. As the coherence drops, the phase

measurements become less accurate.

Over this same Reynolds number range, the azimuthal

development of the subharmonic mode is invariant. For

all axial positions the strong axisymmetry of the mode is

clearly evident. This is observed in Figures 117, 118,

0 123, 124, 131 and 132. The axisymmetry of this mode is

indicative of the axisymmetry of fi, 0. The large phase

I
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variation of this mode is due to the lack of correlation

rather than actual phenomena. Upon examination of the

nonlinearly developed modes in Figures 119, 120, 125,

126, 127, 128, 133 and 134, no unusual behavior is

detected as a result of increasing the Reynolds number.

These results show that the azimuthal behavior of

these modes, for a given region in its amplitude

development, is independent of Reynolds number. Since

the phase and coherence are being measured under natural

conditions, the increase in background disturbance level

in the exiting boundary layer, due to an associated

increase in the Reynolds number, can severely reduce the

signal to noise ratio. Increasing the noise decreases

the measured coherence, see Appendix B. In Chapter VI,

it was carefully shown that the scaling of these modes

was Reynolds number invariant. One would also expect

their development to be similar. This was already hinted

at in Chapter VII and this was also shown here in cases

were an increase in the natural disturbance level did not

contaminate the results.

Azimuthal phase measurements were presented in

Figure 46 at one streamwise location for case 3L for a

Reynolds number of 42,000 to illustrate the initial

existence of both axisymmetric and helical modes. More

information about these modes are now presented. The

azimuthal variation for the coherence for this same

condition is shown in Figure 135. The initial
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axisymmetric mode is characterized by a constant value of

coherence which is independent of separation angle. The

behavior for the helical mode is also shown. A local

minimum is observed at a 900 separation angle. This

behavior was established for any absolute angle the

velocity sensor was at as long as the separation angle

was at 90 degrees with respect to the pressure port. The

downstream development of the coherence for these modes

is shown in Figure 136. Up to an axial distance of 0.6D

the coherence for the axisymmetric mode is independent of

the relative azimuthal separation angle. At this

streamwise location, the maximum amplitude of this mode

was observed in Figure 88. Once this mode starts to

decay, the coherence is no longer a constant value and

.smooth variation is observed. The form of the coherence

for the helical mode at these downstream positions

indicates a similar behavior to that observed in the

previous figure. By x/D = 0.75, the coherence at zero

degree separation angle has dropped sufficiently but the

same basic shape is still maintained. The phase

variation of these modes for the same downstream

locations are shown in Figure 137. Irrespective of what

downstream location was examinedy both the axisymimetric

mode and the helical mode remain clearly identifiable.

The variation of the coherence for the subharmonic

mode for cases 2L and 3L are displayed in Figure 138.

These results show the effect of increased background



136

disturbance levels on the coherence distribution. This

is due in part to the randomization which was observed in

the pressure field with increasing disturbance levels in

Figure 61. The near field pressure does not remain as

coherent as in the ultra low disturbance level cases.

J
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CHAPTER IX

SIGNATURE OF INSTABILITIES ON JET CENTERLINE

In the previous chapters the axial and azimuthal

development of the various instability modes were

0 examined along two positions in the mean shear region of

the jet. In an initial cursory examination of the axial

dependence, presented in Chapter V, it was observed that

the development of these instability modes is strongly

imprinted on the jet centerline. In fact, past an axial

distance of one diameter, these modes could only be

tracked in the core region because the velocity

fluctuations, due to the transitioning flow in the mean

shear region, masked those of the instability modes. The

signature of these modes on the jet centerline is

examined in this chapter along the entire core region.

The dependence of the evolution of these modes on the

initial flow conditions is also examined.

The axial variation of the coherence between the

streamwise velocity fluctuations on the jet centerline

and the near field pressure for case 1L at a Reynolds

number of 42,000 is first shown in Figure 139. The

coherence for the observed modes grows and then decays in

a manner similar to that observed for their amplitude

development. The weakest coherence is associated with

the initial axisymmetric eigenmode. The coherence of

this mode peaks at x/D = 0.4 before decaying. This axial
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position corresponds to the position of the peak

intensity of the mode as was observed in the mean shear

region in Figures 75 and 78. The subharmonic mode

initially exhibits a high coherence near the nozzle lip.

This coherence grows to a peak value in the subharmonic

resonant region where maximum energy was observed in the

subharmonic mode. After this point the subharmonic

coherence gradually decays. The nonlinearly arising

difference mode develops a peak coherence near the same

position. The coherence of this mode decays at a much

slower rate. It is quite surprising that even after four

diameters, a strong coherence exists between the velocity

field here and the near field pressure. It is quite

clear that the pressure field at the nozzle lip for all

of the modes is associated with the vorticity development

throughout the entire axial region bounded by the

potential core. This pressure field is not generated

within a localized region. The notion that only the

pairing process produces a pressure signal which is then

radiated back to the nozzle lip is simply not consistent

with the coherence behavior of the observed modes.

A similar behavior is observed for a slightly higher

Reynolds number of 52,000 as is shown in Figure 140. In

addition to the observed modes which scale with the jet

momentum thickness, the coherence variation for the

potential-core final Strouhal mode is also established.

It is observed that this mode has a coherence of about
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0.2 from 1 to 4 diameters downstream. The influence of

this mode at the nozzle lip has been speculated about in

the literature for quite sometime. It is shown here that

the velocity fluctuations of this mode over the entire

core are correlated to the near field pressure. This

once again indicates that the peak in the near field

pressure spectrum is due to the spatial vorticity

evolution of its associated mode. The spatial growth for

a few of the observed modes in this case is shown in

Figure 141. Here the amplitude development is dominated

by the low frequency nonlinearly developing modes.

The axial variation of the coherence for various

modes for test flow condition 2L at a Reynolds number of

42,000 is shown in Figure 142. Comparing the nature of

this with the results for test flow condition 1L,

presented in Figures 139 and 140, one finds no

substantial differences. This was expected based on the

results of Chapter VII where similar conclusions were

drawn. The amplitude development of the lower frequency

modes for this case is shown in Figure 143. Each of

these modes initially grows nearly exponentially. The

non-exponential behavior is probably due to non parallel

aspects of the flow over this region. As in the previous

cases, the subharmonic amplitude reaches a peak value at

the same axial position as was observed in Figure 87.

This position is where the maximum amplitude was observed

in the mean shear region. The nonlinearly developed

C'
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modes continue growing until a value of x/D of about 1.5

diameters. After this position the amplitude of these

modes grows at a much slower rate. Near the same axial

position of 1.5 diameters, Figures 28 and 32 show that

the mean and turbulence intensity profiles across the jet

shear region have attained self similarity. This may be

related to the change in the observed instability

behavior. At this point though it is unclear what

mechanisms are involved.

The centerline characteristics are next examined for

test flow condition 3L. These results are shown in

Figure 144. Included in this figure are the initial

axisymmetric mode, its subharmonic and the core final

Strouhal frequency. Upon examination of the downstream

variation of the coherence along with Figures 140 and

142, one notes no differences are found in the nature of

development between the three test flow conditions. The

only effect that the introduction of background

disturbance level has on the centerline characteristics

is to reduce the overall level of the measured coherence.

This effect is discussed in more detail in Appendix B.

In Figures 140 and 144 the potential-core final

Strouhal mode was found to be correlated to the near

field pressure along the entire axial extent of the

potential core. The emergence of this mode was most

clearly noted in the ultra low disturbance level

condition of flow 1L. The centerline amplitude
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development of this mode for this case at Re = 42,000 is

shown in Figure 145. Also included in this figure are

the results of Crighton and Gaster (1976) who calculated

the centerline spatial amplification rates for an

axisymmetric disturbance in a slowly diverging jet flow.

Excellent agreement is observed within the first 2.5

diameters even though the measured divergence rate is,

approximately 25% greater than that used in the

theoretical predictions. As the divergence rate

increases, the local amplification rate should decrease.

This is probably part of the discrepancy between

predictions and the measurements beyond 2.5 diameters.

This result seems to indicate that over the region of

agreement, the amplification should also be obtainable

using locally parallel flow assumptions.
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CHAPTER X

INSTABILITY EVOLUTION OF INITIAL JET
UNDER EXTERNAL FORCING

The natural evolution of an axisymmetric jet has

been presented in details in the previous chapters. In

this chapter, some of the characteristics of the initial

jet are examined under external forcing. In recent work

by Ho and Huang (1981), they report that the response

frequency of a two dimensional shear layer is not

necessarily that of the excitation input. Steps were

observed in the response frequency which corresponded to

merging of two and three vortices at a time. This type
behavior is not indicative of a linear response of the

forced eigenmode. A similar behavior was found in

Appendix A when the background room disturbance level was

high and forcing was applied. Unlike this behavior, this

chapter deals with pure tone low level forcing for the

various test flow conditions so that the initial response

is linear. Local growth rates and phase speeds are then

determined for the various test conditions and compared

to linear spatial theories.

Documentation of Forcing Conditions

The jet was forced through excitation from a

loudspeaker positioned 2m away from the jet at an angle

of 60 degrees with respect to the jet centerline. A

pressure tap in the. nozzle face at y = 0 was used to
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monitor this excitation field while a single hot-wire

probe was used to measure the streamwise growth of the

disturbance in the shear layer at the same relative

azimuthal angle. From visualization results and

azimuthal investigations of the initially developing

flow, the forced disturbance field was axisymmetric. The

sensitivity to the forcing occured at the separation line

of the jet nozzle through its receptivity to the far

field of the loudspeaker. This mechanism assured the

axisymmetry of the forced initial instability.

The typical response of the shear layer with

external excitation is shown in Figure 146. In this

case, the response frequency of the initial jet is

plotted versus the forcing frequency. Both variables are

then normalized by the frequency of the naturally

developing axisymmetric eigenmode. The case shown is for

test flow condition 1L at two different Reynolds numbers.

Identical behavior is observed in all other test flow

conditions having laminar exit boundary layers. In each

case, the response frequency of the shear layer is

identical to the forcing frequency. For any case tested,

the shear layer could only be excited 2.4 times the

initial natural axisymmetric eigen-frequency. This value

was approximately 25% below the frequency of the neutral

mode.

In all of the measurements, the amplitude of the

disturbance pressure field was carefully adjusted so that
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a unity coherence was obtained between the near field

pressure and the velocity fluctuations of the disturbance

in the near jet region. This ensured that the forced

response of the initial jet was linear. However, unity

coherence could not be obtained for forcing frequencies

above approximately 2fi,0 . This meant that at high

forcing frequencies the pressure field did not induce a

linear response of the jet. The effect of this on the

growth characteristics of the mode will De discussed

shortly.

Typical flow visualization results for test flow

condition 1L are shown in Figures 147 and 148. The

effect of the Strouhal forcing frequency on the initial

jet development is illustrated in Figure 147. Photograph

(a) shows the typical development of the jet under

natural conditions. When a pressure field at the initial

axisymmetric eigen-frequency is applied, (c), the initial

development becomes much more organized as expected. The

axisymmetry of the disturbance field is also observed in

the initial jet structures, When forced at the

subharmonic mode frequency, the initial development is

described by Figure 147(b). Photograph (d) illustrates

the development of the jet when the forcing frequency is

2.3 times the natural axisymmetric eigen-frequency. It

is in this region of excitation frequency that a non

unity coherence was observed.

The entrainment into the jet under these excitation

*1
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conditions is depicted in Figure 148. The excitation

causes an initial axisymmetric perturbation which

subsequently grows to a finite level and rolls up.

Induction by these large structures entrains the

surrounding air into the jet. Similar observations were

also made in cases 2L and 3L. Visualization of this type

of behavior was carried out by Bouchard (1981) in a water

jet. Results of his work also point out the importance

of the initial large structures and their forcing

frequency in the initial entrainment into the jet.

Measurements of the mean velocity profiles across

the jet at different axial positions were shown in

Figures 18 and 19 for all test flow conditions with

laminar exit boundary layers. Also plotted on these

figures were the hyperbolic tangent velocity profile and

a two dimensional shear layer profile assuming a Blasius

boundary layer at the separation point or exit. The

results are inconclusive as to which velccity profile the

data reflects. The main difference in the velocity

profiles from a stability point of view is the maximum

slope the profile attains. The difference in slope

changes the initial vorticity distribution across the

layer. This small difference, as Monkewitz and Huerre

(1981) point out, leads to changes in the maximum

amplification rate of approximately 20%. The region of

o maximum slope corresponds to the region of the data that

is least accurate due to the resolution limitations of
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the traversing mechanism.

For a number of streamwise locations, the mean

velocity profiles were fit to a hyperbolic tangent

profile. The average error in curve fitting this profile

was denoted a. The variation of this error, normalized

by twice the momentum thickness, with axial position was

shown in Figure 20 for all three test flow conditions at

Reynolds number of 42,000 without external forcing.

Independent of flow condition, the initial mean velocity

profiles fit the hyperbolic tangent functions with the

same accuracy up to x/D = 0.3, where a strong deviation

began to appear. For this reason, the measurements at

this value of Re were limited to axial positions less

than 0.3D. In fact, when excitation frequencies less

than 2f were applied, a unity coherence was observedi,0

throughout this region.

The amplitude and phase development for case 1L at

Re = 42,000 for different forcing frequencies is

described in Figures 149 and 150. The phase measurements

were carried out in the same manner as those described in

Chapter VII. Regions of exponential growth of the

amplitude are clearly evident in Figure 149 for all modes

with the exception of the mode having a Strouhal

frequency of 0.03. This mode is in the region where

unity coherence was not observed. This lack of linearity

is quite evident from the amplitude development of the

mode. A simple model for the behavior at high

I
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frequencies was proposed by Bechert (1974). Here the

upstream travelling disturbance field interacts with the

downstream developing instability wave. The amplitude

behavior of this high frequency mode agrees with his

model. In this respect, the coherence function properly

predicts when this type of instability process is truly

linear. Growth rates of the modes were calculated both

locally and by a linear regression over the exponential

growth region. From the phase variations with downstream

distance, the average phase speed was also calculated

locally and over the entire region using the method

described in Chapter VII. All of these results were

normalized with the momentum thickness at the axial

position where the first peak in the velocity spectrum of

the initial axisymmetric instability frequency was

observed. The reasons behind choosing this particular

parameter were given in Chapter VI.

Comparison to Theoretical Results

From the results of Figure 17 it is observed that

over the region of measurements the divergence of the

jet,d6/dx,is 1.7%. Because of the nearly parallel nature

of the flow in this region, it is not surprising that the

growth of the disturbances is exponential over the entire

region as indicated in Figure 149. This fact is also

borne out in the observation of a constant phase speed

over the same region as shown in Figure 150. As long as

7)
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the measured coherence had a unity value, it was observed

that the locally calculated growth rates and phase speeds

were nearly indentical to those obtained using a least

squares technique to fit the data over the entire

measuring range.

These results along with the results obtained in the

initial exponential region of the naturally developing

jet are summarized in Figures 151 through 155. The

calculated amplification rates for case IL are shown in

Figure 151. Included in this figure is the amplification

curve determined by Michalke (1971) for an axisymmetric

jet having a hyperbolic tangent profile. In addition,

the amplification curve presented by Monkewitz and Huerre

(1981) for a two dimensional shear layer is shown. The

data for both natural and excited conditions follow the

results of latter authors' work quite well. Even though

their analysis is for a strictly two dimensional case,

the previous results of Michalke (1971) indicate that for

a jet with initially thin boundary layers there is no

difference in the amplification rates from that obtained

for a two dimensional shear layer. The difference

between the axisymmetric and plane cases however should

be evident in the phase speed of the mode, particularly

at low frequencies.

This result is shown in Figure 152. In this case

the phase speed clearly follows the trend of Michalke's

(1971) analysis for the jet. At low frequencies, ultra

'1l
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fast waves are observed just as in the case of Bechert

and Pfizenmaier (1975) and predicted by Michalke (1971).

These results indicate that the developing instability is

a jet instability and viewing the initial shear layer as

locally two dimensional because of an initially thin

boundary layer assumption is not completely correct.

The results for cases 2L and 3L are shown in Figures

153 through 155. These results are consistent with the

previous case. They once again show that the disturbance

levels introduced by changing the flow conditions are

sufficiently low so that a linear mechanism still

dominates.

A summary of all of the amplification rates for all

of the cases is shown in Figure 156 along with the data

of Freymuth (1966). Remarkable agreement is observed

between all of the indicated data and the theory of

Monkewitz and Huerre (1981). It is expected that this

comparison is valid only for initially thin boundary

layers. As the thickness increases, the deviation from

their theory should increase. These results are however,

encouraging. To obtain maximum quantitative information

from these locally parallel theories, the results of

Michalke's (1971) paper should be recomputed using an

axisymmetric version of the Monkewitz and Huerre (1981)

profile. It is also clear that the non-parallel effects

over the measuring region are of second order, i.e., in

the very near region of the jet.

j
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CHAPTER XI

DISCUSSION

In the previous chapters a number of different

aspects concerning the natural development of turbulent

jets have been examined. This investigation, for the

most part, concerned itself with the initial region of

the jet, extending to approximately five diameters

downstream. The effects of Reynolds number and initial

conditions on the mean development of the jet and also on

the characteristics of the developing instability modes

were established. The purpose of this chapter is to

summarize the above results so that a complete picture of

the dynamic development of the jet is presented..

Axisymmetric, Helical and Subharinonic Resonance
Instabilities an eir Interaction

The instability mechanisms, which were observed to

develop in a turbulent jet, were found to be dependent on

the initial state of the boundary layer. Cases for which

the exit boundary layer was laminar and initially thin

are discussed first. For the sake of this discussion, a

boundary layer is assumed to be thin when D/26 > 50.

From a careful mapping of the azimuthal phase variation

of the observed spectral peaks in the initial region of

the jet, it was determined that the jet is initially

unstable to both axisymmetric and helical modes. The

helical mode was observed to occur at a frequency 20%

.. ....
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higher than that of the initial axisymmetric mode. The

initial instability of the jet alternates between these

two modes. The percentage of time that the jet initially

exhibited either m=0 or m=l behavior strongly depended on

the initial disturbance characteristics in the exit

boundary layer.

When the disturbance level in the exit boundary

layer was on the order of 1%, the initial jet was

dominated by the axisymmetric mode. As this disturbance

level was increased, either by increasing the Reynolds

number or by artificially introducing varying levels of

background turbulence at a constant Reynolds number, the

percentage of time the helical mode was observed also

increased. At the highest disturbance level conditions,

the probability of finding either mode was approximately

0.5. This perhaps is an asymptotic limit for laminar

exit boundary layers. This behavior was also observed in

the one dimensional velocity spectrum in the mean shear

region of the jet. For initial disturbance levels of

about 5%, the nearly equal amplitude development of both

modes was documented. Corresponding to a decrease in the

percentage of time the m=l mode was observed, due to a

decrease in disturbance level, there was a decrease in

the magnitude of this peak in the time averaged velocity

spectrum. At very low disturbance levels, only coherence

measurements between the near-field pressure and the

velocity fluctuation in the mean shear region could

U
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identify the initial helical mode.

Due to the influence of the background disturbance

level on the initial mode selection, experiments carried

out in some of the cleaner test facilities that exist

would not be able to identify the helical mode unless one

is specifically looking for it by utilizing multiple

channel techniques in the frequency domain. The

observation of the dual nature of the initial jet

instability was unknowingly detected by Husain and

Hussain (1980). These experiments were carried out at a

high Reynolds number and the initial disturbance level in

the exit laminar boundary layer was 3%. The dual nature

of the spectral peaks separated by 20% are clearly

observed. Some of their results were correctly described

in terms of probe interference effects. However, even

when takiny this into account, the side band peak they

observed is at the proper frequency of the helical mode

as determined by the present investigation. Even the

magnitude of this peak compared to the axisymmetric mode

agrees with the ratio found here for a similar exit core

intensity case.

The present results also agree with the predictions

of Michalke (1971) and of Mattingly and Chang (1974).

Both papers described the nearly equal sensitivity of the

jet to axisymmetric and helical modes initially. It was

only in the work of the latter authors that the

difference in the most amplified frequencies of these
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modes is described. This was due to a slightly different

mean velocity profile compared to Michalke's (1971).

Before considering the possible interactions of

these modes, the development of the jet from an initial

axisvmmetric state is considered. The initial

axisymmetric mode grows exponentially until a finite

amplitude of approximately 1% of the jet velocity is

reached. The reason for the observed exponential growth,

even though the jet is non-parallel in this region, is

discussed in a later section of this chapter. A

subharmonic resonance mechanism, as proposed by Kelly

(1967), then takes place and the growth of this new

subharmonic instability leads to the pairing process.

The concept that pairing is a result of a subharmonic

resonance mechanism was pointed out by Ho and Huang

(1981). The growth of this subharmonic mode reaches a

maximum value at the pairing location, and this amplitude

is larger than the value for the initial axisymmetric

mode. It was also shown that at the resonant position

both the fundamental and subharmonic waves have the same

phase speed of 0.5 the jet velocity, a necessary

requirement for a resonance mechanism. In addition to

the equal phase speeds, the fundamental and subharmonic

modes must be out of phase for the pairing to occur, as

demonstrated by Riley and Metcalfe (1980).

An attempt to illustrate the out of phase nature of

the modes during resonance is shown in the conditioned
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visualization of Figures 157 and 158. In both- cases the

conditioning probe is located just downstream of the

resonant position. The photographs in Figure 157 were

triggered on the fundamental mode. The structures just

downstream of the initial roll up of the jet have

approached each other and are just beginning to pair. If

one examines the visualization for the subharmonic mode

trigger in Figure 158, the same structures have already

merged. These results are consistent for all three

cases. Since the visualization was taken at the same

relative phase of zero degrees for each mode, this shows

that the two modes are indeed out of phase during

resonance.

In addition to the subharmonic resonance, another

set of instabilities was observed. The initial

axisymmetric and helical modes, which originally

developed through a linear instability, interact

nonlinearly. This nonlinearity is depicted in the

generation of sum and difference modes along with higher

order modes. The modes which were generated through this

interaction agreed with those observed by Miksad (1973)

in a forced two-dimensional shear layer. What is very

4d much different in the present case though is that this

develops naturally and the interaction is between

axisymmetric and non-axisymmetric modes. Of these

nonlinearly generated modes, the one which exhibited a

maximum amplitude was the difference mode. Miksad (1973)

Iq
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also found this to be an energetic mode. It appears that

this nonlinear interaction takes place in the change over

between the axisymmetric and helical modes, during their

alternating performance.

In addition to this nonlinear interaction, a second

nonlinear interaction was observed. In this case an

interaction was observed between the subharmonic mode and

the difference mode which originally developed through a

nonlinear interaction between the axisymmetric and

helical modes. Generation of modes at the sum and

difference of these frequencies was also evident.

When the frequencies of all of the above modes were

properly normalized, it was determined that the Strouhal

number of these modes are independent of Reynolds number

and initial background disturbance level. A consistant

normalization was obtained when the momentum thickness at

the location where a spectral peak was first observed for

the initial axisymmetric mode was used.

With this, one finds that the development of a

turbulent jet with a laminar exit boundary layer is

determined by a series of linear and nonlinear

instabilities involving axisymmetric, subharmonic and

helical modes. Even though these modes scale at a

constant Strouhal number, the degree of nonlinearity and

three dimensionality is dependent on the initial

background disturbance characteristics in the exit

boundary layer. If this jet was externally forced at the

S!, ' ' - ,- - - -
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initial instability frequency at low levels just

sufficient to eliminate the natural amplitude and phase

modulation of this mode, an axisymmetric flow field would

be established which would inhibit the development of the

helical mode initially and hence the other nonlinear

interactions. If various eduction techniques were used

to examine the development of the large scales in the

near region of the jet under these conditions, the educed

flowfield will not represent the naturally developing

flow, particularly when the initial disturbance is

sufficient so that both m=o and m=l modes are equally

important. This is one of the major pitfalls of

conditional sampling; see Wlezien (1981) for additional

comments on this.

In cases where the initial boundary layer was

turbulent, an instability mechanism was also identified.
This mode initially scaled at a constant Strouhal number

of 0.024. This same value was also found by Hussain and

Zaman (1981) in a two dimensional shear layer. The

initial boundary layer in this case was marginally thin

and the instability frequency varied inversely with the

local momentum thickness until the jet was thick enough

to support the St = 0.47 mode. The nature of this

instability was found to be independent of Reynolds

number and initial exit boundary layer thickness.

4 In addition to these instabilities, the long wave

instability which scaled with the jet diameter was also
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documented. This scaling of the mode was found to be

weakly dependent on the initial conditions. As the

disturbance levels in the exit boundary layer increased,

the growth of the jet decreased. Thus at any downstream

position, the jet was thinner, which corresponded to

larger values of D/G for the higher disturbance level

conditions. According to Michalke (1971), even though

the jet is sufficiently thick, slightly larger values of

D/G lead to higher frequencies. This increase in final

Strouhal frequency with increasing disturbance levels was

reported in Chapter VI.

This long wave mode is the same one that has been

called the jet Strouhal frequency or jet-column

instability, e.g., see Kibens (1979). Based on the

volume of measurements presented here, it is conjectured

that this mode reflects the local instability of the jet

near the end of the potential core. As pointed out

earlier, one should not be surprised that this mode is

quite energetic. Since modes developed earlier in the

jet scale with smaller lengths and since lower frequency

have a farther reaching noise radiation field, the

dominance of this frequency in the far field pressure is

not necessarily that surprising. However one must

recognize the existence of a cascade of instabilities of

decreasing frequencies along the jet, even past the end

of its core. The farther downstream, the more important

is the helical mode.

C)



158

Relation Between Instabilities and Near Field Pressure

Once the various instability mechanisms were

established, the characteristics of the near field

pressure were examined. Pressure spectra taken just

outside the boundary layer separation point revealed

numerous discrete peaks when the exit boundary layer was

laminar. These peaks correspond to the different

instability modes observed in the jet. In low

disturbance level conditions, small amplitude peaks were

observed at frequencies corresponding to the initial

axisymmetric and helical modes. Large amplitude peaks

were observed for the subharmonic mode and the difference

mode generated through the nonlinear interaction between

the initial m=o and m=l modes. Strong peaks were also

observed at the sum and diffference modes generated

through the nonlinear interaction between the subharmonic

mode and the previously discussed difference mode. These

results indicate that the low frequency downstream

developing modes are more acoustically efficient than the

higher frequency modes.

As was pointed out in Chapter V, the amplitude

dev !opment of the other modes, which were generated

through the nonlinear interactions, was weak compared to

the modes described above. These weak modes were not

clearly defined in the pressure spectrum. The

characteristics of the pressure spectrum were also
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influenced by the background disturbance level. In cases

where the mean vorticity across the separated layer was

kept constant, increasing the peak disturbance level in

the exit boundary layer caused a broad band decrease in

the amplitude of the measured pressure spectrum along

with spectral broadening of the observed peaks.

Associated with these changes in near-field pressure

characteristics was an increase in three dimensionality

in the initially developing flow along with lower peak

amplitude of the developing instabilities as the

disturbance level was increased.

This pressure field in turn acted as a small

amplitude natural excitation to the jet. For cases 1L

and 2L it was shown in earlier results, agreeing with

those of Freymuth (1966), Morkovin and Paranjape (1971)

and Mungur (1977) for forced conditions, that the

external pressure field and the responding velocity field

developing in the jet were related by a linear

functional. Thus the magnitude of a peak in the pressure

spectrum determines the initial amplitude of that mode in

Due to the linepr nn+ira nf i-hic the -- d-

initially grows exponentially with an amplification rate

determined by its Strouhal number. In case where the

background disturbance level in the exit boundary layer

was lower than the initial amplitude of the naturally

forced mode, peaks corresponding to those in the pressure

spectrum were observed in the velocity spectrum near the
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nozzle. These modes were, then, observed to initially grow

exponentially as described above. This was monitored

over the entire Reynolds number range examined for cases

1L and 2L. Due to the characteristics of the near field

pressure, all of the observed modes had an initially

larger amplitude than either the initial axisymmetric or

helical modes. In fact, the naturally developing

qeigenmodes radiated a distinct pressure field which in
turn altered the naturally developing eigenmodes into a

partially forced response in particular,at Reynolds

numbers providing match conditions.

From extensive coherence measurements it was

determined that'for any observed mode, the pressure field

at the nozzle lip was highly correlated to the velocity

fluctuations over the entire growth and decay of that

mode, with a peak coherence observed at the peak

amplitude. In the case of the subharmonic mode it was

determined that the evolution of the resonant instability

was the source of the large pressure amplitude observed

at the nozzle lip.

One can easily show that the source region of the

subharmonic mode is roughly a /10 long. In terms of the

radiated far field this can be considered an acoustically

compact source. It can not however be considered as

compact in the near field sense. Because of this, if the

pairing process was responsible for the generated

pressure field, then the coherence between the velocity

!I
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and pressure fluctuations would have been non-zero only

where they paired. This is clearly not the case. The

simplistic model suggested by Laufer (1980) is clearly

not correct. The pairing of two structures does not send

back a signal to synchronize the next pairing. Rather,

it is the entire subharmonic instability which is

responsible for the pressure field and the pairing is

simply the result of the resonant instability. A similar

type of result was obtained by Heavens (1980) who tried

to show that the pairing of'two structures radiated a

pressure field. His results indicated that there was no

direct relationship.

While pairing is one of the mechanisms for large

scale intraction in the jet, no evidence of its

regularity in naturally developing jets can be found. In

particular, the higher the disturbance level in the

initial conditions, the more irregular is the pairing,

i.e., it is modulated in space and time. Ample evidence

is provided here for this conclusion, e.g, see Figures

157 and 158.(j

Scaling of Initial Axisymmetric Instability and its

SuBTharmonlc Resonance

In the previous chapters it was shown that in cases

where the exit boundary layers were laminar, the

frequency scaling of both the initial axisymmetric mode

and its subharmonic mode were independent of Reynolds

number and background disturbance level conditions. It
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will be shown in this section that the downstream-

characteristic of these modes are also identical when the

proper normalization is used in the streamwise direction.

From the phase measurements presented in Chapter VII, the

wavelength of the initial axisymmetric mode was

determined. It was also found that past the resonant

location, the wavelength of the subharmonic mode is twice

that of the fundamental. Phase measurements of the

subharmonic mode between the nozzle lip influence region

and the resonant position were inconclusive for Re <

80,000. For this reason, this data is normalized by the

wavelength of the subharmonic mode during resonance.

Upon normalizing the streamwise distance by the mode

wavelength, the development of the axisymmetric and

subharmonic modes is shown in Figures 159 and 160 for

case 1L.

Initially the amplitude of the subharmonic mode is

an order of magnitude larger than that of the

fundamental. This was shown to be due to the natural

forcing of the flow due to its downstream development.

The subharmonic mode initially grows exponentially. At

one subharmonic wavelength downstream, the subharmonic

resonance takes over and the amplification of this mode

increases by 40%. Even though the initial amplitude of

the subharmonic mode is larger at Re = 42,000 then at

52,000 or 60,000, due to the natural coupling condition

discussed in Chapter VI, the amplitude development of

L ... I. . . . . .. .- -
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these modes past the resonant position is nearly

identical. These results indicate that at the coupling

condition the development of the initial axisymmetric

mode is not changed. In fact, only the initial amplitude

of the subharmonic mode is increased, due to a stronger

pressure field. However, as the resonant mechanism

progresses, nearly equal maximum amplitudes are observed.

In these figures the subharmonic resonance was

observed to occur at one subharmonic wavelength. This

value however is misleading. The proper interpretation

of this position is not one subharmonic wavelength but

rather two initial wavelengths. The reasoning behind

this is clearly evident. For the subharmonic mode there

is an initial region where the phase is constant. After

this region the subharmonic has a phase speed of 0.81

which was clearly evident in the high Reynolds number

case. Associated with this difference in phase speed

between fundamental and subharmonic modes is a difference

in wavelength such that 2 X is greater than the actuali,0

wavelength of the subharmonic in this region. This is

simply because the two waves develop initially from

linear mechanisms. It is only after the resonance that

the subharmonic mode changes phase speed so that the

wavelengths are related by a factor of two. The

subharmonic wavelength thus changes as it develops.

(3O Since the resonance is actually triggered by the finite

amplitude state of the fundamental, the true
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interpretation of the resonant position is that it occurs

at two fundamental wavelengths downstream.

The downstream growth of the jet for case IL at a

Reynolds number of 42,000 is next shown in Figure 161.

At the resonant position of two fundamental wavelengths,

the jet begins its linear growth. From the visualization

it is observed that the initial roll up of the jet

occured at this position. The average pairing position,

as determined from the visualization, is also indicated.

Near this position there is approximately a 10% increase

in the jet thickness as compared to the linear growth.

The case illustrated in Figure 161 is for the natural

coupling condition of Case IL. where energy in the

subharmonic mode was greatest. In this case pairing has

only a small influence on the linear growth region. For

all other cases the effect will be even less. For

natural developing flows the momentum thickness of the

jet does not remain constant until pairing occurs, after

which it doubles. This is only true in certain forced

conditions as presented by Ho and Haung (1981).

The nature of the subharmonic resonance is also

shown in Figure 162. In this case, Figure 20 has been

replotted in a normalized streamwise coordinate. Prior

to resonance, the mean velocity profile remains nearly

hyperbolic tangent in nature, indicative of the initial

linear instability. As resonance begins, the mean

velocity profile develops a large deviation from this
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profile. This is associated with an instability of a new

base flow, that being the initial rolled up structure.

The deviation arises from the relative movements of these

structures leading to pairing. This deviation was

originally observed in the conditionally ensembled mean

velocity profiles obtained by Hussain and Zaman (1980).

This large deviation is indicative that the instability

of this new base flow, the subharmonic resonance, is

different from the initial instability which originally

developed this structure.

The effect of changing the background disturbance

characteristics on the amplitude development for these

modes in shown in Figure 163 for a Reynolds number of

42,000. The initial amplitude of the subharmonic mode is

lower for case 2L than for case 1L due to the decreased

magnitude in the pressure field as observed in Figure 61.

Case 3L, as reported earlier, showed no initial

subharmonic growth. In all three cases though, the

subharmonic resonance is found to occur at two initial

instability wavelengths. Once past the resonant

position, the amplitude development for cases 2L and 3L

are nearly identical. The resonant position is found to

be independent of Reynolds number and background

disturbance level as long as the exit boundary layers

remained laminar.

A summary of the measured amplification rates for

the initial axisymmetric mode, the initial subharmonic
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mode and the subharmonic resonant mode are shown in

Figure 164 for case iL over the Reynolds number range

examined in Chapter VII. This shows that the initial

amplification of the axisymmetric and subharmonic modes,

normalized by the proper momentum thickness, is

independent of Reynolds number and the values agree well

with those predicted by Monkewitz and Huerre (1981).

More scatter is observed in the data for the measured

amplification rates of the resonant mode but it appears

that the amplification rates do not scale with the

momentum thickness near the jet exit. This is gratifying

to see since it is expected that this mode should scale

with the momentum thickness at the resonant position. If

this is true then the local momentum thickness of the jet

at the resonant position will not scale with the inverse

square root of the Reynolds number. This is indicated by

the deviation away from the dashed line. There is

insufficient data on the momentui thickness at the

resonant position to comment further on this conjecture.

The effect of Reynolds number and background

disturbance level on the downstream variation of the

coherence between the velocity fluctuations in the jet

and the near field pressure at a relative angle of zero

degrees is examined next in Figure 165. In both cases

the downstream location is normalized by twice the

initial axisymmetric wavelength. This figure illustrates

the Reynolds number independence of the coherence
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behavior for Case IL. The quality of the collapse in

this case is also an indication of the high confidence

level in the data. The variation between test flow

conditions at a constant Reynolds number is shown in

Figure 166. The initial development of the coherence

function up to the resonant position was clearly shown to

be a function of the initial background disturbance

level. It was very surprising to find that the shape of

the coherence distribution past the resonant position. is

essentially unaffected by the initial conditions. These

three test flow conditions were vastly different in terms

of jet development. The jet growth rate decreased and a

substantial increase in three dimensionality was observed

as one proceeded from case 1L to case 3L. In fact, the

pairing process was more randomized and non-axisymmetric

in the higher disturbance level cases. Still, the nature

of the coherence between the radiated pressure field and

the velocity fluctuations in the jet for the subharmonic

mode appear to be unaffected. This further illustrates

that the resonance mechanism is independent of

disturbance level.

Coupling Between Long and Short Waves

In Chapter VI it was observed that when the initial

instability frequency was an integral multiple of two of

the final Strouhal frequency and the background

disturbance level low enough, a natural coupling was
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observed which led to an, increase in the magnitude of-the

subharmonic pressure field. This criterion for coupling

was first presented by Kibens (1979) for a forced jet

where the initial Strouhal frequency cascaded down to the

final Strouhal frequency through a number of vortex

pairings. In the present case, a natural coupling is

observed using the same criterion even though after the

first pairing the axisymmetry of the flow is quickly

destroyed due to the strong nonlinear modes so that this

simple cascading is not observed.

This conflict seems to indicate that even though

there is coupling, the simple cascading model proposed by

Kibens (1979) is not the mechanism. However the model

predicts the coupling conditions exactly. Examination of

Figures 159 and 160 reveals that when this coupling

condition is met only the subharmonic mode is affected;

the initial axisymmetric mode is unaffected. The

initially larger amplitude of the subharmonic is due to

an initially stronger pressure field. During resonance

the coupling and non coupling positions have nearly equal

amplitude behavior. This is also observed in Figure 165

where the coherence is essentially unaffected during

resonance. The only difference lies in the higher

coherence observed between the nozzle lip region and the

resonance region along U/Uj = 0.6. This appears to be

the only significant difference between coupling and non

"- coupling conditions. Perhaps the coupling takes place
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before the subharmonic resonance.

This coupling was only observed under low

disturbance levels. Under higher disturbance levels the

emergence of the helical mode disrupted the natural

coupling conditions. When the jet is properly forced

though, as in Kibens (1979,1980) experiment, this latent

coupling emerges and can be quite dominant. Clearly the

axisymmetry of the flow is a necessary condition.

However, more work is required to determine the exact

nature of this mechanism.

The Jet: A Non-Parallel Flow

Based on Figures 17, 37 and 161 it becomes quite

evident that the development of the jet is that of a

non-parallel flow. This is true for jets having

initially laminar or turbulent exit boundary layers.

When the exit boundary layer is laminar, there are two

distinct regions where non-parallel affects enter: the

region before the subharmonic resonance, and the region

after the resonance where the linear growth of the jet

has begun. The divergence in the early region is roughly

one-half that after the resonance position. From this

and the nature of the observed instabilities in this

case, a correct formulation of the stability problem

would have to include the non-parallel aspects of the

flow, the unsteadiness or time dependency of the initial

modes, nonlinear interaction effects, the initial

I::.
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dist;urbance level characteristics and also the

interaction of the downstream flow with the boundary

layer separation region through an acoustic near field.

This type of formulation is not available nor is one

expected in the near future due to its complexity. The

only available theories are linear and assume that

either the flow is locally parallel or that there is a

slow spreading of the jet. The nature of these theories

were discussed in Chapter I. It is the intention of this

section to show that the linear parallel flow theories

can be utilized locally to determine the qualitative

nature of the developing jet when the subharmonic

resonance mechanism is also included. Since these

theories are linear, there is no hope of accounting for

the nonlinear interactions which develop between the m=0

and m=l modes. However, some could be introduced as

additional linear modes into the analysis.

The results of Michalke (1971) and those of

Mattingly and Chang (1974) show characteristics which are

similar in nature. However, due to the amount of

information available in the former authors paper, his

results will be used here for discussion purposes.

From Michalke's theory (1971), the Strouhal

frequency of the most amplified mode can be found as a

a function of the local momentum thickness. This curve is

shown in Figure 167. It indicates that as the local

thickness increases the frequency of the maximum
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amplified mode decreases. This behavior is identical for

the m=o and m=l modes for Strouhal frequencies above 0.5.

This close similarity is presumably due to the shape of

the profile utilized. Mattingly and Chang's (1974)

results would be about 17% apart. Also included in this

figure is the initial Strouhal frequencies for Cases 1L,

2L and 1T at Re ='42,000. In each case the value of

was that used in the normalization described in Chapter

VI. The trend of the data is similar to the predicted

results. The main difference is in the initial mean

velocity profiles between 1L, 2L and 1T. From earlier

results (see Figure 69) the Case IT behavior was expected

to fall above this curve and cases 1L and 2L below this

curve.

Crighton and Gaster (1976) have found that there is

little difference when considering the linear stability

of a slowly diverging jet as compared to the analysis

using linear theory assuming locally parallel conditions,

as far as the determination of the most amplified

wavelength and phase speed is concerned. One however can

not obtain radial information concerning the

amplification rate using locally parallel flow

assumptions. To qualitatively describe the basic

development of the jet, the use of the locally parallel

flow assumption is a reasonable first order approach.

This assumption is first used in describing the

development of the jet when the initial boundary layer is
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turbulent. This is illustrated in Figures 168 and 169'.

In the case examined, the initial exit boundary layers

can still be considered thin. It was observed that the

turbulent boundary layer became unstable at a certain

frequency near the nozzle. This corresponds to the data

for case 1T in Figure 167. As the downstream distance

was increased, the shear region of the jet increased as a

ratio of the jet width, and the frequency of this peak

decreased in the manner shown in Figure 168. Michalke's

results show that for these thin jets the Strouhal number

of the mode should remain constant along with the

amplification rate based on the local momentum thickness.

This prediction was recently confirmed by Hussain and

,* Zaman (1981) for a two dimensional shear layer. Similar

scaling should be observed here due to the thin nature of

the exit boundary layers and the similarity between

amplification curves for two dimensional shear layers and

thin axisymmetric jets. It is only after the jet has

developed to a sufficiently thick layer with a smaller

potential part that the final Strouhal mode becomes

dominant. This is also observed in Figure 168.

Based on the results of the previous chapters,

* 4 pairing can be characterized by an instability of

azimuthally coherent structures triggered by a

subharmonic resonance mechanism. In cases where the exit

4 boundary layer was laminar, two distinct regions of

non-parallel effects were observed. The first
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corresponds to the region where the initial modes grew

exponentially. The second corresponds to the region

after the subharmonic resonant position. The divergence

in the second region was nearly three times that of the

first region. From flow visualization it was concluded

that very little smoke was entrained into the jet until

after the resonant position. Thus in the first region

the divergence is probably due to viscous diffusion in

the radial direction of the initially separated region.

Because of this much lower divergence rate and the

thinness of the exit boundary layer? the flow can be

assumed as parallel over this entire region. Exponential

growth up to the resonant position would then be

expected. This is precisely what was observed.

In Kibens' (1979) work, the vortex pairing was

localized in a jet by low level azimuthal excitation. It

was observed that the frequencies found along the jet

centerline decreased in a stepwise manner, with the steps

occuring at the pairing position. Even though the simple

linear theory outlined above cannot describe the pairing

process due to the nonlinearity involved and the

deviation away from the hyperbolic tangent profile during

the subharmonic resonance, a similar staircase behavior

can be predicted from Michalke's theory (1971) by

assuming that the subharmonic mode remains spatially

coherent during the resonance even though the flow is

diverging. This is a rather wishful assumption but the
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basic behavior in Figure 169 is similar to that observed

by Kibens (1979). Along the first horizontal line the

amplification of the initial axisymmetric mode decreases.

The vertical line corresponds to the position where the

first subharmonic mode has an equal amplification rate as

the fundamental. The amplification of this subharmonic

grows and then decays until the amplification of its

subharmonic increases to a value equal to its fundamental

and so on.

Prospects for Controllability of Jets
4!

It has been demonstrated that the jet is dominated

by the growth and decay of various instability

mechanisms. A radiated pressure field was found to be

associated with each of these instability

characteristics. Because of the linearity between this

radiated pressure field and the developing modes in the

jet, it should be possible to utilize the natural

pressure field at the nozzle to actively introduce

disturbances with the amplitude and azimuthal

distribution determined from the near field pressure.

This disturbance field could be delayed to be out of

phase with the pressure field. The out of phase nature

of this excitation would effectively cancel the early

linear instabilities in the jet. This method may work

with either laminar or turbulent exit boundary layers.

K If the early instability development of the jet is
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altered, the "final" Strouhal frequency may also be

controllable. This type of imposed disturbances which

are controlled by the naturally developing flow field

itself seems quite attractive. In fact, this type of

active control may lead to substantial noise reduction.
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CHAPTER XII

CONCLUSION

Utilizing simultaneous near-field pressure and

velocity measurements, along with multiple flow

visualization techniques, the effect of initial

conditions and Reynolds number on the development and

nature of instabilities in the initial region of

axisymmetric turbulent free jets has been examined.

Based on the results which were graphically presented and

the arguments which were discussed in the previous

chapters, a number of conclusion can be drawn. These are

presented below.

Conclusions

When the exit boundary layer is laminar, the natural

jet is initially unstable alternately to axisymmetric and

helical modes. The axisymmetric mode scales at a

constant Strouhal number of 0.013 while the helical mode

scales at a constant Strouhal number which is 20% higher

than this value. This behavior is independent of

Reynolds number and initial conditions when properly

scaled. The relative occurence of these modes is highly

dependent on the initial disturbance characteristics at

the jet exit. It is only at low Reynolds number and for

low initial disturbance levels that the axisymmetric mode

dominates initially. As either of these variables

increase both modes become equally important.

- . -
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When the initial axisymmetric mode grows in

amplitude to about 1% of the jet velocity, a secondary

instability, the subharmonic resonance, develops and

lea~s to the pairing of axisymmetric vortical structures.

The downstream position of this resonant interaction

occurs after two wavelengths of the initial axistymmetric

mode. At this position the subharmonic wave has obtained

the same phase speed as the fundamental and the two waves

are out of phase. This point is also associated with the

initial roll up of the jet and the first downstream

position where strong entrainment into the jet is

observed.

Due to the alternating nature of the initial

instability of the jet, the axisymmetric and helical

modes interact nonlinearly to develop numerous sum and

difference modes, typical of a two wave nonlinear

interaction. As these modes develop downstream, the

subharmonic mode also interacts nonlinearly with these

modes. Just downstream of the peak amplitude of these

latter nonlinear interactions, strong three-

dimensionality and transition to fully turbulent flow are

observed.

Due to the multiplicity of spectral peaks recorded,

the true identification of these modes cannot be

determined without azimuthal information. Lack of proper

identification of these modes, coupled with low level

incidental disturbances in a number of facilities, has

1i. ..
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lead to the previously reported non-ideal behavior of

steps in the initial instability frequency as a function

of Reynolds number. These steps are not related to a

feedback mechanism or pairing.

Each of these instability modes generates a pressure

field which is coherent with the velocity fluctuations in

the jet over the entire growth and decay range of that

mode and not just at the pairing position. This and the

scaling of the resonant position reveal that pairing is

not responsible for a feedback mechanism. This strong

near-field pressure acts as a natural excitation to the

jet. When the initial background-disturbance level in

the exit boundary layer is lower than the amplitude of

the velocity fluctuations generated through the

functional relationship with the pressure field for a

given mode, that mode initially grows exponentially in

the jet with a phase speed determined by its Strouhal

number. The initial amplitude of these modes is

dependent on the acoustic efficiency of the source. As

expected, the lower frequency modes are more efficient.

Under extremely low disturbance levels a natural

coupling is observed between the initial instability of

the jet and the Strouhal mode associated with the final

stages of the potential core. This was observed when the

two frequencies are related by integral multiples of two.

This coupling is not related to the pairing process as

* previously believed. At this coupling position,

|- - -"----------------------
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subharmonic pressure radiation is increased leading to a

reinforcement of the axisymmetry of the flow.

When the exit boundary layer is turbulent, a linear

instability based on the mean profile is observed near

the nozzle where the frequency scales at a constant

Strouhal number of 0.024. The development of the jet

from the nozzle lip to the end of the potential core is

found to be adequately described by locally applying

linear spatial theories to account for the slow

divergence of the jet. The instability-generated large

scales develop initially in an axisymmetric form and then

change over to a helical mode before the end of the

potential core. This mode probably persists past the end

of the core.

In general, it is concluded that for these turbulent

jets, with laminar or turbulent initial conditions, a

great deal of appreciation of the flowfield can be gained

by viewing the jet as a non-parallel shear flow which is

always susceptible to instabilities. Viewing the jet as

a shear layer first and then as a jet near the end of the

potential core, may have led to many misleading

perceptions. In any case, the instability of turbulent

layers and the role of subharmonic resonance appear to be

key mechanisms in our findings.

C'
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Recommendations

Based on the results of this investigation a number

of recommendations for futire work can be made. The

azimuthal characteristics of the instantaneous pressure

field at the nozzle should be examined for each

instability mode. Careful manipulation of this natural

field to drive a low level disturbance field may lead to

the controllability of the jet and a decreased far field

noise radiation with only minimal additional power input.

A more comprehensive examination of the nonlinear

interaction between axisymmetric and helical modes need-

to be investigated. The azimuthal behavior of the near

field pressure radiated from the nonlinearly generated

modes needs to be clarified. Further work must be

carried out to examine the basic mechanisms involved in

the natural coupling that occurs under low disturbance

conditions between the initial axisymmetric mode and

Strouhal mode near the end of the core. The documented

nature of the subharmonic resonance and nonlinear

instabilities as well as the importance of the flowfield

interacting with itself through an acoustic field should

give an impetus to future theoretical work in this area.

-' '
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EFFECT OF BACKGROUND ENVIRONMENT
ON INITIAL JET INSTABILITY

During the initial phase of this investigation the

components in the compressed air supply system were not

acoustically treated. A flow condition which was similar

in nature to case 1L was set up and the characteristics

of the initial jet instability frequency were examined as

a function of Reynolds number. The miniature hot-wire

probe discussed in Chapter II was not yet constructed so

a stock laboratory probe whose prong thickness was of the

order of the exit boundary layer thickness was utilizaed.

The variation of the initial Strouhal frequency with the

square root of Reynolds number is shown in Figure 169.

As was discussed in Chapter VI, this variation should be

linear if the acting instability mechanism is also

linear. The observed behavior is clearly not linear.

At first it was thought that this variation was due

to a characteristic associated with the nozzle. A

different shape nozzle was tried and the same trends were

observed. What was interesting was that the steps that

were observed occured at constant values of Strouhal

frequency. In fact the values of these steps occured at

the long wave-short wave coupling conditions, discussed

in Chapter VI, and also at multiples of 1.5 times these

coupling frequencies. When the jet was excited with the

speaker discribed in Chapter X, different responses

resulted depending if the operating Reynolds number was

*1
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in the step or non step region. When the operating

conditions were in a nonstep region, the excitation

frequency and response frequency were identical as the

frequency was reduced until a particular step was

reached. Further reduction in excitation frequency was

associated with an increase in the jet response frequency

as indicated. This non continuous nature between

excitation frequency and jet response frequency was

similar to the type of results Ho and Huang (1981)

observed in a forced two dimensional shear layer.

It was observed that in the natural developing case

the shear layer frequency changed slightly with

increasing streamwise position. Even though the prong

size was below that suggested by Hussain and Zaman (1978)

to minimize probe interference effects, this possiblity

was not ruled out. To determine if this was true, the

miniature probe discussed in Chapter II was constructed.

This reduced the prong dimensions by an order of

magnitude. With this new probe the frequency did not

vary in the streamwise direction. The steps however

still remained, as indicated in Figure 170. The pressure

spectrum was then measured away from the nozzle to

examine the background disturbance field. This is shown

in Figure 171. Strong distinct pressure fluctuations

from the supply system were observed. The magnitude of

these peaks was dependent on the exit Reynolds number but

the frequencies were not. Upon examination of this in
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greater detail, it was determined that the steps occurred

in regions where the peaks occured. The jet did not lock

on to the peak frequency but rather it chose that

frequency which coupled it to the long wave instability.

This is why a constant Strouhal frequency was observed in

the step region and not a constant frequency. Only when

the initial jet instability frequency was near 4000 Hz

did it lock onto this valve. When the supply system was

acoustically treated, the background pressure spectrum

exhibited no distinct peaks. This is observed in Figure

61. With the system properly treated acoustically, the

variation of the initial instability frequency with the

square root of Reynolds number was represented by the

ideal linear behavior as in Figure 56.

To test the susceptability of this clean jet to

acoustical disturbances, low level wide band excitation

which was barely audible was beamed at the jet. The

pressure spectrum characteristics which were observed at

the nozzle are shown in Figure 172. The two broadband

peaks observed are simply characteristics of the speaker

which was utilized. From Figures 173 and 174, the

initial jet response is completely altered. The two

plateau regions correspond to the area of the broad band

spectral peaks observed in the excitation pressure

spectra.

This excercise was designed to show the high

sensitivity of the jet to low level acoustic
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disturbances. In fact, when any visualization was taken,

the fan from the strobe had to be disconnected. The jet

was indeed sensitive to any low level acoustic field in

the laboratory.

UP
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DISCUSSION ON COHERENCE FUNCTION

Let u(t) and p(t) be time series of stationary

random processes. If it is further assumed that each

series is aJso ergodic for the sake of simplicity then a

Fourier transform pair can be constructed as

Su (f) = Rup)exp(-i2HfT)d-

Rup(T) is defined as the cross correlation between the

two signals and Su(f) is defined as the cross-spectral

density function. This cross spectral density function

is described over both positive and negative frequencies.

Typically, a new function is introduced which is only

defined over positive frequencies.

G (f)= 2 S (f) f>o
up up -

o f<o

This function is defined as the single sided cross

spectral density function. This function is in general

complex. The real and imaginary parts are defined as

rC
G(f) C u(f)-i Qup(f)

Here C (f) is defined as the coincident spectral density
up

function and Qup(f) is defined as the quadrature spectral

density function. Since the single sided cross spectrum

. . . .. . . . . . .
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is complex, it can be represented by a phasor. Thus.

G u(f) = IG up(f) I exp [ -i u (f)]

The function up(f) is defined to be the phase

spectrum. The magnitude of the single sided cross

spectrum is usually normalized by the magnitude of the

auto spectrum of each signal. This normalized value is

called the coherence function.

IG (f) 12up
up IG (f) I IG0~(~

Bendat and Piersol (1980) discuss in detail a number of

characteristics of this function. First, if the

coherence has a vlaue of one, u(t) and p(t) are linearly

related. If the coherence is between zero and one,

either extraneous noise is in the system, u(t) and p(t)

are not linearly related, or the output u(t) is due to

other inputs besides p(t).

The above authors also show that when noise is

present in the output u(t), the measured coherence is

given by

IG  (f)
r up Mf 

1 IG M1n

IGuu (f)

A similar experession can be derived for the case when

noise is present only in the input p(t). These results

show that the addition of extraneous noise reduces the
-t
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level of the coherence by the inverse square of the rms

signal to noise ratio.

Ip
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Visualization



197

4-

FLOW

pi

Figure 7. Flow Visualization at Re 20,000 Contitioned on
a Positive Slope Zero Crossing After a Large A:.plitude
Event: Conditioning Probe at x/D = 1.5, U/Uj= 0.6
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fit

FLOW

Figure 8. Determination of Number of Realizations Necessary
for a Suitable Ensemble: (a) 1, (b) 2, (c) 4, (d) 8,
(e) 12, (f) 16
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FLOW

* Figure 10. Flow Visualization at Re =20,000 Conditioned
on a Positive Slope Zero Crossing After a Large

Amplitude Event: (a) Single Exposure, (b) Eight
Realization Multiple Exposure
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- FLOW

Figure 12. Flow Visualization at Re 39,000 Illustrating
the Effect of Disturbance Level on Initial Jet

- DevelopmentL-: (a) Case UL, (b) Case 2L, (c) Case 3L
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I!I

FLOW
Figure 22. Visualization of Jet Development from Initial
Turbulent Boundary Layers; Case 1T with L/D = 0.75:
(a) Re = 42,000, (b) Re 65,000, (c) Re 100,000
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b~t

FLOW
Figure 40. Flow Visualization Illustrating Effect of

Reynolds Number on Entrainment into Jet for Case L:
(a) Re = 42,000, (b) Re = 52,000, (c) Re = 80,000
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Figure 43. Development of Streamwise Velocity Spectrum
and Coherence Between Velocity and Near-Field Pressure;
Case 3L. Re =42,000, U/U= 0.6
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Figure 44. Development of Streamwise Velocity Spectrum

and Coherence Between Velocity and Near-Field Pressure;
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IdI

* FLOW

Figure 45. Flow Visualization Sequence Taken frrm a

High Speed Movie for Case 3L at Re =39,000
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FLOW

A Figure 52. Flow Visualization of Case 1L at Re =42,000

Highlighting Both Axisynunetric and Non-Axisymmhetric Modes
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